用于高功率密度 PEMFC 的含有痕量钴原子掺杂剂的细长型 Fe-N-C

jiayao Cui, Junyong Min, Hao Wang, Jianglan Shui, Lishan Peng, Zhenye Kang, Jieyuan Liu, Qingjun Chen, Shuo Bai, Yanrong Liu
{"title":"用于高功率密度 PEMFC 的含有痕量钴原子掺杂剂的细长型 Fe-N-C","authors":"jiayao Cui, Junyong Min, Hao Wang, Jianglan Shui, Lishan Peng, Zhenye Kang, Jieyuan Liu, Qingjun Chen, Shuo Bai, Yanrong Liu","doi":"10.1039/d4im00043a","DOIUrl":null,"url":null,"abstract":"Developing single-atom Fe-N4/C catalysts is crucial for the large-scale implementation of proton exchange membrane fuel cells (PEMFCs). While Fe-N4/C catalysts are inherently active in accelerating the slow ORR process, their performance is still inferior to that of Pt/C. Herein, a trace Co-doped Fe single-atom catalyst (Fe(tCo)-N-C) containing more active Fe2N8 sites has been synthesized. Interestingly, compared with typical FeN4 sites in Fe-N-C electrocatalyst, the Fe2N8 sites generate a larger Fe-N bond length due to Co-doped. The elongated Fe-N bond in Fe2N8 lowers the d-band center and charge density of the iron sites, enhancing ORR process by facilitating the formation of *OOH and the generation and desorption of *OH. Fe(tCo)-N-C manifested excellent acidic and alkaline ORR activity, with half-wave potential (E1/2) of 0.80 V in HClO4 solution and 0.89 V in KOH medium. More importantly, high peak power densities (Pmax) were realized by applying Fe(tCo)-N-C in PEMFCs, with the Pmax reaching 890 mW cm-2 in H2-O2 and 380 mW cm-2 in H2-air. Additionally, the trace Co dopants in the catalyst improved carbon graphitization and provided high ORR catalytic stability. This research introduces an innovative approach to engineer highly active Fe2N8 sites, providing valuable insights for the sustainable progress of PEMFC technology.","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elongated Fe-N-C containing trace atomic Co dopants for high power density PEMFCs\",\"authors\":\"jiayao Cui, Junyong Min, Hao Wang, Jianglan Shui, Lishan Peng, Zhenye Kang, Jieyuan Liu, Qingjun Chen, Shuo Bai, Yanrong Liu\",\"doi\":\"10.1039/d4im00043a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing single-atom Fe-N4/C catalysts is crucial for the large-scale implementation of proton exchange membrane fuel cells (PEMFCs). While Fe-N4/C catalysts are inherently active in accelerating the slow ORR process, their performance is still inferior to that of Pt/C. Herein, a trace Co-doped Fe single-atom catalyst (Fe(tCo)-N-C) containing more active Fe2N8 sites has been synthesized. Interestingly, compared with typical FeN4 sites in Fe-N-C electrocatalyst, the Fe2N8 sites generate a larger Fe-N bond length due to Co-doped. The elongated Fe-N bond in Fe2N8 lowers the d-band center and charge density of the iron sites, enhancing ORR process by facilitating the formation of *OOH and the generation and desorption of *OH. Fe(tCo)-N-C manifested excellent acidic and alkaline ORR activity, with half-wave potential (E1/2) of 0.80 V in HClO4 solution and 0.89 V in KOH medium. More importantly, high peak power densities (Pmax) were realized by applying Fe(tCo)-N-C in PEMFCs, with the Pmax reaching 890 mW cm-2 in H2-O2 and 380 mW cm-2 in H2-air. Additionally, the trace Co dopants in the catalyst improved carbon graphitization and provided high ORR catalytic stability. This research introduces an innovative approach to engineer highly active Fe2N8 sites, providing valuable insights for the sustainable progress of PEMFC technology.\",\"PeriodicalId\":29808,\"journal\":{\"name\":\"Industrial Chemistry & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Chemistry & Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d4im00043a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4im00043a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发单原子 Fe-N4/C 催化剂对于质子交换膜燃料电池(PEMFC)的大规模应用至关重要。虽然 Fe-N4/C 催化剂在加速缓慢的 ORR 过程方面具有固有的活性,但其性能仍然不如 Pt/C。在此,我们合成了一种痕量钴掺杂的 Fe 单原子催化剂(Fe(tCo)-N-C),其中含有活性更高的 Fe2N8 位点。有趣的是,与 Fe-N-C 电催化剂中典型的 FeN4 位点相比,由于掺杂了 Co,Fe2N8 位点产生了更长的 Fe-N 键。Fe2N8 中拉长的 Fe-N 键降低了铁位点的 d 带中心和电荷密度,通过促进 *OOH 的形成以及 *OH 的生成和解吸来增强 ORR 过程。Fe(tCo)-N-C 具有优异的酸性和碱性 ORR 活性,在 HClO4 溶液中的半波电位(E1/2)为 0.80 V,在 KOH 介质中的半波电位(E1/2)为 0.89 V。更重要的是,在 PEMFC 中应用 Fe(tCo)-N-C 实现了很高的峰值功率密度(Pmax),在 H2-O2 和 H2-air 中的峰值功率密度分别达到 890 mW cm-2 和 380 mW cm-2。此外,催化剂中的痕量钴掺杂物改善了碳石墨化,并提供了较高的 ORR 催化稳定性。这项研究介绍了一种设计高活性 Fe2N8 位点的创新方法,为 PEMFC 技术的可持续发展提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elongated Fe-N-C containing trace atomic Co dopants for high power density PEMFCs
Developing single-atom Fe-N4/C catalysts is crucial for the large-scale implementation of proton exchange membrane fuel cells (PEMFCs). While Fe-N4/C catalysts are inherently active in accelerating the slow ORR process, their performance is still inferior to that of Pt/C. Herein, a trace Co-doped Fe single-atom catalyst (Fe(tCo)-N-C) containing more active Fe2N8 sites has been synthesized. Interestingly, compared with typical FeN4 sites in Fe-N-C electrocatalyst, the Fe2N8 sites generate a larger Fe-N bond length due to Co-doped. The elongated Fe-N bond in Fe2N8 lowers the d-band center and charge density of the iron sites, enhancing ORR process by facilitating the formation of *OOH and the generation and desorption of *OH. Fe(tCo)-N-C manifested excellent acidic and alkaline ORR activity, with half-wave potential (E1/2) of 0.80 V in HClO4 solution and 0.89 V in KOH medium. More importantly, high peak power densities (Pmax) were realized by applying Fe(tCo)-N-C in PEMFCs, with the Pmax reaching 890 mW cm-2 in H2-O2 and 380 mW cm-2 in H2-air. Additionally, the trace Co dopants in the catalyst improved carbon graphitization and provided high ORR catalytic stability. This research introduces an innovative approach to engineer highly active Fe2N8 sites, providing valuable insights for the sustainable progress of PEMFC technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信