通过原子层沉积法生长的掺杂 TiO2 的钇稳定氧化锆电解质的结构、光学和电学特征

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
APL Materials Pub Date : 2024-05-10 DOI:10.1063/5.0205375
Jorge Luis Vazquez, Amin Bahrami, Carolina Bohórquez, Eduardo Blanco, Manuel Dominguez, Gerardo Soto, Kornelius Nielsch, Hugo Tiznado
{"title":"通过原子层沉积法生长的掺杂 TiO2 的钇稳定氧化锆电解质的结构、光学和电学特征","authors":"Jorge Luis Vazquez, Amin Bahrami, Carolina Bohórquez, Eduardo Blanco, Manuel Dominguez, Gerardo Soto, Kornelius Nielsch, Hugo Tiznado","doi":"10.1063/5.0205375","DOIUrl":null,"url":null,"abstract":"Electrolyte material optimization is crucial for electrochemical energy storage devices. The specific composition and structure have an impact on conductivity and stability, both of which are essential for efficient device performance. The effects of controlled incorporation of TiO2 into a Yttria-Stabilized Zirconia (YSZ) electrolyte using the atomic layer deposition (ALD) technique are investigated in this study. The surface chemical composition analysis reveals variations in the Ti oxidation state and a decrease in the O/(Zr + Y + Ti) ratio as TiO2 concentration increases. The formation of acceptor states near the valence band is proposed to reduce the bandgap with the Fermi level. The structural properties indicate that as TiO2 concentration increases, surface homogeneity and crystallite size increase. The contact angle with water indicates a hydrophobic behavior influenced by surface morphology and potential oxygen vacancies. Finally, electrical properties, measured in Ru/TiO2-doped YSZ/Au capacitors operated at temperatures between 100 and 170 °C, showed that the TiO2 incorporation improved the ionic conductivity, decreased the activation energy for conductivity, and improved the capacitance of the cells. This study highlights the importance of the ALD technique in solid-state electrolyte engineering for specific applications, such as energy storage devices.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, optical, and electrical characterization of TiO2-doped yttria-stabilized zirconia electrolytes grown by atomic layer deposition\",\"authors\":\"Jorge Luis Vazquez, Amin Bahrami, Carolina Bohórquez, Eduardo Blanco, Manuel Dominguez, Gerardo Soto, Kornelius Nielsch, Hugo Tiznado\",\"doi\":\"10.1063/5.0205375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrolyte material optimization is crucial for electrochemical energy storage devices. The specific composition and structure have an impact on conductivity and stability, both of which are essential for efficient device performance. The effects of controlled incorporation of TiO2 into a Yttria-Stabilized Zirconia (YSZ) electrolyte using the atomic layer deposition (ALD) technique are investigated in this study. The surface chemical composition analysis reveals variations in the Ti oxidation state and a decrease in the O/(Zr + Y + Ti) ratio as TiO2 concentration increases. The formation of acceptor states near the valence band is proposed to reduce the bandgap with the Fermi level. The structural properties indicate that as TiO2 concentration increases, surface homogeneity and crystallite size increase. The contact angle with water indicates a hydrophobic behavior influenced by surface morphology and potential oxygen vacancies. Finally, electrical properties, measured in Ru/TiO2-doped YSZ/Au capacitors operated at temperatures between 100 and 170 °C, showed that the TiO2 incorporation improved the ionic conductivity, decreased the activation energy for conductivity, and improved the capacitance of the cells. This study highlights the importance of the ALD technique in solid-state electrolyte engineering for specific applications, such as energy storage devices.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0205375\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0205375","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电解质材料的优化对电化学储能设备至关重要。特定的成分和结构会对电导率和稳定性产生影响,而电导率和稳定性对于设备的高效性能至关重要。本研究利用原子层沉积(ALD)技术研究了在钇稳定氧化锆(YSZ)电解液中可控加入 TiO2 的效果。表面化学成分分析表明,随着 TiO2 浓度的增加,Ti 氧化态发生变化,O/(Zr + Y + Ti)比值下降。在价带附近形成的受体态被认为会随着费米级的提高而减小带隙。结构特性表明,随着二氧化钛浓度的增加,表面均匀性和晶体尺寸也会增加。与水的接触角表明,疏水行为受到表面形态和潜在氧空位的影响。最后,在温度为 100 至 170 °C、掺杂 Ru/TiO2 的 YSZ/Au 电容器中测量的电特性表明,TiO2 的加入提高了离子导电性,降低了导电活化能,并改善了电池的电容。这项研究凸显了 ALD 技术在固态电解质工程中的重要性,可用于储能设备等特定应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural, optical, and electrical characterization of TiO2-doped yttria-stabilized zirconia electrolytes grown by atomic layer deposition
Electrolyte material optimization is crucial for electrochemical energy storage devices. The specific composition and structure have an impact on conductivity and stability, both of which are essential for efficient device performance. The effects of controlled incorporation of TiO2 into a Yttria-Stabilized Zirconia (YSZ) electrolyte using the atomic layer deposition (ALD) technique are investigated in this study. The surface chemical composition analysis reveals variations in the Ti oxidation state and a decrease in the O/(Zr + Y + Ti) ratio as TiO2 concentration increases. The formation of acceptor states near the valence band is proposed to reduce the bandgap with the Fermi level. The structural properties indicate that as TiO2 concentration increases, surface homogeneity and crystallite size increase. The contact angle with water indicates a hydrophobic behavior influenced by surface morphology and potential oxygen vacancies. Finally, electrical properties, measured in Ru/TiO2-doped YSZ/Au capacitors operated at temperatures between 100 and 170 °C, showed that the TiO2 incorporation improved the ionic conductivity, decreased the activation energy for conductivity, and improved the capacitance of the cells. This study highlights the importance of the ALD technique in solid-state electrolyte engineering for specific applications, such as energy storage devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信