用相位和振幅控制太赫兹扫描隧道显微镜观察二维半导体中的超快状态选择性隧道现象

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
APL Materials Pub Date : 2024-05-07 DOI:10.1063/5.0200845
L. Bobzien, J. Allerbeck, S. E. Ammerman, R. Torsi, J. A. Robinson, B. Schuler
{"title":"用相位和振幅控制太赫兹扫描隧道显微镜观察二维半导体中的超快状态选择性隧道现象","authors":"L. Bobzien, J. Allerbeck, S. E. Ammerman, R. Torsi, J. A. Robinson, B. Schuler","doi":"10.1063/5.0200845","DOIUrl":null,"url":null,"abstract":"THz-pulse driven scanning tunneling microscopy (THz-STM) enables access to the ultrafast quantum dynamics of low-dimensional material systems at simultaneous ultrafast temporal and atomic spatial resolution. State-selective tunneling requires precise amplitude and phase control of the THz pulses combined with quantitative near-field waveform characterization. Here, we employ our state-of-the-art THz-STM with multi-MHz repetition rates, efficient THz generation, and precisely tunable THz waveforms to investigate a single sulfur vacancy in monolayer MoS2. We demonstrate that 2D transition metal dichalcogenides (TMDs) are an ideal platform for near-field waveform sampling by THz cross-correlation. Furthermore, we determine the THz voltage via QEV scans, which measure the THz rectified charge Q as a function of THz field amplitude E and dc bias Vdc. Mapping the complex energy landscape of localized states with a resolution down to 0.01 electrons per pulse facilitates state-selective tunneling to the HOMO and LUMO orbitals of a charged sulfur vacancy.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"58 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast state-selective tunneling in two-dimensional semiconductors with a phase- and amplitude-controlled THz-scanning tunneling microscope\",\"authors\":\"L. Bobzien, J. Allerbeck, S. E. Ammerman, R. Torsi, J. A. Robinson, B. Schuler\",\"doi\":\"10.1063/5.0200845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"THz-pulse driven scanning tunneling microscopy (THz-STM) enables access to the ultrafast quantum dynamics of low-dimensional material systems at simultaneous ultrafast temporal and atomic spatial resolution. State-selective tunneling requires precise amplitude and phase control of the THz pulses combined with quantitative near-field waveform characterization. Here, we employ our state-of-the-art THz-STM with multi-MHz repetition rates, efficient THz generation, and precisely tunable THz waveforms to investigate a single sulfur vacancy in monolayer MoS2. We demonstrate that 2D transition metal dichalcogenides (TMDs) are an ideal platform for near-field waveform sampling by THz cross-correlation. Furthermore, we determine the THz voltage via QEV scans, which measure the THz rectified charge Q as a function of THz field amplitude E and dc bias Vdc. Mapping the complex energy landscape of localized states with a resolution down to 0.01 electrons per pulse facilitates state-selective tunneling to the HOMO and LUMO orbitals of a charged sulfur vacancy.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0200845\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0200845","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太赫兹脉冲驱动扫描隧道显微镜(THz-STM)可同时获得低维材料系统的超快时间和原子空间分辨率的超快量子动力学。状态选择性隧道技术要求对太赫兹脉冲进行精确的振幅和相位控制,并结合定量近场波形表征。在这里,我们采用了最先进的 THz-STM 技术,该技术具有多MHz 重复率、高效 THz 生成和精确可调的 THz 波形,用于研究单层 MoS2 中的单个硫空位。我们证明二维过渡金属二钙化物 (TMD) 是通过太赫兹交叉相关进行近场波形采样的理想平台。此外,我们还通过 QEV 扫描确定了太赫兹电压,该扫描测量了太赫兹整流电荷 Q 与太赫兹场振幅 E 和直流偏压 Vdc 的函数关系。以每个脉冲低至 0.01 个电子的分辨率绘制局部态的复杂能谱,促进了对带电硫空位的 HOMO 和 LUMO 轨道的状态选择性隧穿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrafast state-selective tunneling in two-dimensional semiconductors with a phase- and amplitude-controlled THz-scanning tunneling microscope
THz-pulse driven scanning tunneling microscopy (THz-STM) enables access to the ultrafast quantum dynamics of low-dimensional material systems at simultaneous ultrafast temporal and atomic spatial resolution. State-selective tunneling requires precise amplitude and phase control of the THz pulses combined with quantitative near-field waveform characterization. Here, we employ our state-of-the-art THz-STM with multi-MHz repetition rates, efficient THz generation, and precisely tunable THz waveforms to investigate a single sulfur vacancy in monolayer MoS2. We demonstrate that 2D transition metal dichalcogenides (TMDs) are an ideal platform for near-field waveform sampling by THz cross-correlation. Furthermore, we determine the THz voltage via QEV scans, which measure the THz rectified charge Q as a function of THz field amplitude E and dc bias Vdc. Mapping the complex energy landscape of localized states with a resolution down to 0.01 electrons per pulse facilitates state-selective tunneling to the HOMO and LUMO orbitals of a charged sulfur vacancy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信