利用数据衰减实现可扩展物联网工作负载的区块链数据存储

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Panagiotis Drakatos, Constantinos Costa, Andreas Konstantinidis, Panos K. Chrysanthis, Demetrios Zeinalipour-Yazti
{"title":"利用数据衰减实现可扩展物联网工作负载的区块链数据存储","authors":"Panagiotis Drakatos, Constantinos Costa, Andreas Konstantinidis, Panos K. Chrysanthis, Demetrios Zeinalipour-Yazti","doi":"10.1007/s10619-024-07441-9","DOIUrl":null,"url":null,"abstract":"<p>The Internet of Things (IoT) revolution has introduced sensor-rich devices to an ever growing landscape of smart environments. A key component in the IoT scenarios of the future is the requirement to utilize a shared database that allows all participants to operate collaboratively, transparently, immutably, correctly and with performance guarantees. Blockchain databases have been proposed by the community to alleviate these challenges, however existing blockchain architectures suffer from performance issues. In this paper we introduce Triabase, a novel permissioned blockchain system architecture that applies data decaying concepts to cope with scalability issues in regards to blockchain consensus and storage efficiency. For blockchain consensus, we propose the Proof of Federated Learning (PoFL) algorithm which exploits data decaying models as Proof-of-Work. For storage efficiency, we exploit federated learning to construct data postdiction machine learning models to minimize the storage of bulky data on the blockchain. We present a detailed explanation of our system architecture as well as the implementation in the Hyperledger fabric framework. We use our implementation to carry out an experimental evaluation with telco big data at scale showing that our framework exposes desirable qualities, namely efficient consensus at the blockchain layer while optimizing storage efficiency.</p>","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"156 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A blockchain datastore for scalable IoT workloads using data decaying\",\"authors\":\"Panagiotis Drakatos, Constantinos Costa, Andreas Konstantinidis, Panos K. Chrysanthis, Demetrios Zeinalipour-Yazti\",\"doi\":\"10.1007/s10619-024-07441-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Internet of Things (IoT) revolution has introduced sensor-rich devices to an ever growing landscape of smart environments. A key component in the IoT scenarios of the future is the requirement to utilize a shared database that allows all participants to operate collaboratively, transparently, immutably, correctly and with performance guarantees. Blockchain databases have been proposed by the community to alleviate these challenges, however existing blockchain architectures suffer from performance issues. In this paper we introduce Triabase, a novel permissioned blockchain system architecture that applies data decaying concepts to cope with scalability issues in regards to blockchain consensus and storage efficiency. For blockchain consensus, we propose the Proof of Federated Learning (PoFL) algorithm which exploits data decaying models as Proof-of-Work. For storage efficiency, we exploit federated learning to construct data postdiction machine learning models to minimize the storage of bulky data on the blockchain. We present a detailed explanation of our system architecture as well as the implementation in the Hyperledger fabric framework. We use our implementation to carry out an experimental evaluation with telco big data at scale showing that our framework exposes desirable qualities, namely efficient consensus at the blockchain layer while optimizing storage efficiency.</p>\",\"PeriodicalId\":50568,\"journal\":{\"name\":\"Distributed and Parallel Databases\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed and Parallel Databases\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10619-024-07441-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed and Parallel Databases","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10619-024-07441-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)革命为日益增长的智能环境引入了传感器丰富的设备。未来物联网场景中的一个关键组成部分是需要使用一个共享数据库,使所有参与者都能协作、透明、不变、正确地操作,并保证性能。社区提出了区块链数据库来缓解这些挑战,但现有的区块链架构存在性能问题。本文介绍的 Triabase 是一种新型许可区块链系统架构,它应用数据衰减概念来应对区块链共识和存储效率方面的可扩展性问题。在区块链共识方面,我们提出了联盟学习证明(PoFL)算法,该算法利用数据衰减模型作为工作证明(Proof-of-Work)。在存储效率方面,我们利用联合学习来构建数据预测后机器学习模型,以尽量减少区块链上庞大数据的存储。我们详细介绍了我们的系统架构以及在超级账本结构框架中的实现。我们利用我们的实现对电信大数据进行了大规模实验评估,结果表明我们的框架具有理想的品质,即在优化存储效率的同时在区块链层达成高效共识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A blockchain datastore for scalable IoT workloads using data decaying

A blockchain datastore for scalable IoT workloads using data decaying

The Internet of Things (IoT) revolution has introduced sensor-rich devices to an ever growing landscape of smart environments. A key component in the IoT scenarios of the future is the requirement to utilize a shared database that allows all participants to operate collaboratively, transparently, immutably, correctly and with performance guarantees. Blockchain databases have been proposed by the community to alleviate these challenges, however existing blockchain architectures suffer from performance issues. In this paper we introduce Triabase, a novel permissioned blockchain system architecture that applies data decaying concepts to cope with scalability issues in regards to blockchain consensus and storage efficiency. For blockchain consensus, we propose the Proof of Federated Learning (PoFL) algorithm which exploits data decaying models as Proof-of-Work. For storage efficiency, we exploit federated learning to construct data postdiction machine learning models to minimize the storage of bulky data on the blockchain. We present a detailed explanation of our system architecture as well as the implementation in the Hyperledger fabric framework. We use our implementation to carry out an experimental evaluation with telco big data at scale showing that our framework exposes desirable qualities, namely efficient consensus at the blockchain layer while optimizing storage efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Distributed and Parallel Databases
Distributed and Parallel Databases 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Distributed and Parallel Databases publishes papers in all the traditional as well as most emerging areas of database research, including: Availability and reliability; Benchmarking and performance evaluation, and tuning; Big Data Storage and Processing; Cloud Computing and Database-as-a-Service; Crowdsourcing; Data curation, annotation and provenance; Data integration, metadata Management, and interoperability; Data models, semantics, query languages; Data mining and knowledge discovery; Data privacy, security, trust; Data provenance, workflows, Scientific Data Management; Data visualization and interactive data exploration; Data warehousing, OLAP, Analytics; Graph data management, RDF, social networks; Information Extraction and Data Cleaning; Middleware and Workflow Management; Modern Hardware and In-Memory Database Systems; Query Processing and Optimization; Semantic Web and open data; Social Networks; Storage, indexing, and physical database design; Streams, sensor networks, and complex event processing; Strings, Texts, and Keyword Search; Spatial, temporal, and spatio-temporal databases; Transaction processing; Uncertain, probabilistic, and approximate databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信