作为剪子模空间的奥格雷迪十褶

IF 1.2 2区 数学 Q1 MATHEMATICS
Camilla Felisetti, Franco Giovenzana, Annalisa Grossi
{"title":"作为剪子模空间的奥格雷迪十褶","authors":"Camilla Felisetti, Franco Giovenzana, Annalisa Grossi","doi":"10.1017/fms.2024.46","DOIUrl":null,"url":null,"abstract":"We give a lattice-theoretic characterization for a manifold of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400046X_inline1.png\"/> <jats:tex-math> $\\operatorname {\\mathrm {OG10}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> type to be birational to some moduli space of (twisted) sheaves on a K3 surface. We apply it to the Li–Pertusi–Zhao variety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400046X_inline2.png\"/> <jats:tex-math> $\\operatorname {\\mathrm {OG10}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> type associated to any smooth cubic fourfold. Moreover, we determine when a birational transformation is induced by an automorphism of the K3 surface, and we use this to classify all induced birational symplectic involutions.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"O’Grady tenfolds as moduli spaces of sheaves\",\"authors\":\"Camilla Felisetti, Franco Giovenzana, Annalisa Grossi\",\"doi\":\"10.1017/fms.2024.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a lattice-theoretic characterization for a manifold of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050942400046X_inline1.png\\\"/> <jats:tex-math> $\\\\operatorname {\\\\mathrm {OG10}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> type to be birational to some moduli space of (twisted) sheaves on a K3 surface. We apply it to the Li–Pertusi–Zhao variety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S205050942400046X_inline2.png\\\"/> <jats:tex-math> $\\\\operatorname {\\\\mathrm {OG10}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> type associated to any smooth cubic fourfold. Moreover, we determine when a birational transformation is induced by an automorphism of the K3 surface, and we use this to classify all induced birational symplectic involutions.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.46\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.46","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了一个晶格理论特征,即$\operatorname {\mathrm {OG10}}$ 类型的流形与 K3 表面上的(扭曲)剪切的某个模空间是双向的。我们将其应用于与任何光滑三次方四折相关联的$\operatorname {\mathrm {OG10}}$ 类型的李-柏图-赵曲率。此外,我们还确定了K3曲面的自动变形何时诱导了双向变换,并以此对所有诱导的双向折射卷积进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
O’Grady tenfolds as moduli spaces of sheaves
We give a lattice-theoretic characterization for a manifold of $\operatorname {\mathrm {OG10}}$ type to be birational to some moduli space of (twisted) sheaves on a K3 surface. We apply it to the Li–Pertusi–Zhao variety of $\operatorname {\mathrm {OG10}}$ type associated to any smooth cubic fourfold. Moreover, we determine when a birational transformation is induced by an automorphism of the K3 surface, and we use this to classify all induced birational symplectic involutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信