具有 k-liminal 奇点的 Calabi-Yau varieties 的变形

IF 1.2 2区 数学 Q1 MATHEMATICS
Robert Friedman, Radu Laza
{"title":"具有 k-liminal 奇点的 Calabi-Yau varieties 的变形","authors":"Robert Friedman, Radu Laza","doi":"10.1017/fms.2024.44","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to describe certain nonlinear topological obstructions for the existence of first-order smoothings of mildly singular Calabi–Yau varieties of dimension at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000446_inline1.png\"/> <jats:tex-math> $4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For nodal Calabi–Yau threefolds, a necessary and sufficient linear topological condition for the existence of a first-order smoothing was first given in [Fri86]. Subsequently, Rollenske–Thomas [RT09] generalized this picture to nodal Calabi–Yau varieties of odd dimension by finding a necessary nonlinear topological condition for the existence of a first-order smoothing. In a complementary direction, in [FL22a], the linear necessary and sufficient conditions of [Fri86] were extended to Calabi–Yau varieties in every dimension with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000446_inline2.png\"/> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-liminal singularities (which are exactly the ordinary double points in dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000446_inline3.png\"/> <jats:tex-math> $3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> but not in higher dimensions). In this paper, we give a common formulation of all of these previous results by establishing analogues of the nonlinear topological conditions of [RT09] for Calabi–Yau varieties with weighted homogeneous <jats:italic>k</jats:italic>-liminal hypersurface singularities, a broad class of singularities that includes ordinary double points in odd dimensions.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformations of Calabi–Yau varieties with k-liminal singularities\",\"authors\":\"Robert Friedman, Radu Laza\",\"doi\":\"10.1017/fms.2024.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to describe certain nonlinear topological obstructions for the existence of first-order smoothings of mildly singular Calabi–Yau varieties of dimension at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000446_inline1.png\\\"/> <jats:tex-math> $4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For nodal Calabi–Yau threefolds, a necessary and sufficient linear topological condition for the existence of a first-order smoothing was first given in [Fri86]. Subsequently, Rollenske–Thomas [RT09] generalized this picture to nodal Calabi–Yau varieties of odd dimension by finding a necessary nonlinear topological condition for the existence of a first-order smoothing. In a complementary direction, in [FL22a], the linear necessary and sufficient conditions of [Fri86] were extended to Calabi–Yau varieties in every dimension with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000446_inline2.png\\\"/> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-liminal singularities (which are exactly the ordinary double points in dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000446_inline3.png\\\"/> <jats:tex-math> $3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> but not in higher dimensions). In this paper, we give a common formulation of all of these previous results by establishing analogues of the nonlinear topological conditions of [RT09] for Calabi–Yau varieties with weighted homogeneous <jats:italic>k</jats:italic>-liminal hypersurface singularities, a broad class of singularities that includes ordinary double points in odd dimensions.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.44\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.44","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是描述维数至少为 $4$ 的轻度奇异 Calabi-Yau 变体一阶平滑存在的某些非线性拓扑障碍。对于节点 Calabi-Yau 三维,[Fri86] 首次给出了一阶平滑存在的必要且充分的线性拓扑条件。随后,Rollenske-Thomas [RT09] 通过找到一阶平滑存在的必要非线性拓扑条件,将这一图景推广到奇数维的节点 Calabi-Yau 变体。在一个互补的方向上,在 [FL22a] 中,[Fri86] 的线性必要条件和充分条件被扩展到具有 1$ 极限奇点(这正是维数为 3$ 的普通双点,但在更高维数中不是)的各维 Calabi-Yau 变体。在本文中,我们通过建立[RT09]的非线性拓扑条件的类比,给出了所有这些先前结果的共同表述,这些非线性拓扑条件适用于具有加权同质 k-liminal 超曲面奇点的 Calabi-Yau varieties,奇点是包括奇数维普通双点在内的一大类奇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformations of Calabi–Yau varieties with k-liminal singularities
The goal of this paper is to describe certain nonlinear topological obstructions for the existence of first-order smoothings of mildly singular Calabi–Yau varieties of dimension at least $4$ . For nodal Calabi–Yau threefolds, a necessary and sufficient linear topological condition for the existence of a first-order smoothing was first given in [Fri86]. Subsequently, Rollenske–Thomas [RT09] generalized this picture to nodal Calabi–Yau varieties of odd dimension by finding a necessary nonlinear topological condition for the existence of a first-order smoothing. In a complementary direction, in [FL22a], the linear necessary and sufficient conditions of [Fri86] were extended to Calabi–Yau varieties in every dimension with $1$ -liminal singularities (which are exactly the ordinary double points in dimension $3$ but not in higher dimensions). In this paper, we give a common formulation of all of these previous results by establishing analogues of the nonlinear topological conditions of [RT09] for Calabi–Yau varieties with weighted homogeneous k-liminal hypersurface singularities, a broad class of singularities that includes ordinary double points in odd dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信