K. Venkatadri, K. V. Narasimha Murthy, Tasveer A. Bég, O. Anwar Bég, Sireetorn Kuharat
{"title":"利用布昂奥尔诺双组分模型对充满多孔介质且饱和磁性纳米流体的矩形外壳中的自然对流进行数值模拟","authors":"K. Venkatadri, K. V. Narasimha Murthy, Tasveer A. Bég, O. Anwar Bég, Sireetorn Kuharat","doi":"10.1002/cjce.25300","DOIUrl":null,"url":null,"abstract":"<p>Motivated by studying emerging nanofluid-based magnetic fuel cells and hybrid direct absorber solar collectors, a numerical study is presented for buoyancy-driven flow in a vertical enclosure containing a porous medium saturated with magnetized nanofluid flow under a transverse static magnetic field. The enclosure features adiabatic side walls and vertical heat slits, ensuring consistent cold temperatures on the lower and upper bounded walls. The side walls of the regime are insulated, and the hot slits are centrally located on these walls. The finite difference method (FDM) is applied to employ the transformed dimensionless vorticity–stream function (VSF) formulation of the transport equations. The impact of pertinent parameters on isotherm, streamline, iso-concentration, and average Nusselt and Sherwood numbers are visualized with contour plots and graphs. Increasing Darcy number values tend to amplify the isotherm magnitudes. Higher Hartmann (magnetic) number values, on the other hand, lead to a reduction in local Nusselt number profiles but do not significantly modify the local Sherwood number. The porous medium permeability, as simulated via the Darcy number, has a strong impact on streamlines, thermal contours, and iso-concentrations. A reduction in Darcy's number suppresses local Nusselt and Sherwood numbers, whereas an elevation in Rayleigh's number enhances them. Increasing the Buongiorno nanoscale Brownian motion parameter enhances local Nusselt and Sherwood numbers at both cold walls of the enclosure. The simulations provide a deeper insight into enclosure flows involving electrically conducting nanofluids in advanced processing systems for nanomaterials and hybrid fuel cells utilizing electromagnetic and liquid fuel technologies.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"102 10","pages":"3639-3660"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of natural convection in a rectangular enclosure filled with porous medium saturated with magnetic nanofluid using Buongiorno's two-component model\",\"authors\":\"K. Venkatadri, K. V. Narasimha Murthy, Tasveer A. Bég, O. Anwar Bég, Sireetorn Kuharat\",\"doi\":\"10.1002/cjce.25300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by studying emerging nanofluid-based magnetic fuel cells and hybrid direct absorber solar collectors, a numerical study is presented for buoyancy-driven flow in a vertical enclosure containing a porous medium saturated with magnetized nanofluid flow under a transverse static magnetic field. The enclosure features adiabatic side walls and vertical heat slits, ensuring consistent cold temperatures on the lower and upper bounded walls. The side walls of the regime are insulated, and the hot slits are centrally located on these walls. The finite difference method (FDM) is applied to employ the transformed dimensionless vorticity–stream function (VSF) formulation of the transport equations. The impact of pertinent parameters on isotherm, streamline, iso-concentration, and average Nusselt and Sherwood numbers are visualized with contour plots and graphs. Increasing Darcy number values tend to amplify the isotherm magnitudes. Higher Hartmann (magnetic) number values, on the other hand, lead to a reduction in local Nusselt number profiles but do not significantly modify the local Sherwood number. The porous medium permeability, as simulated via the Darcy number, has a strong impact on streamlines, thermal contours, and iso-concentrations. A reduction in Darcy's number suppresses local Nusselt and Sherwood numbers, whereas an elevation in Rayleigh's number enhances them. Increasing the Buongiorno nanoscale Brownian motion parameter enhances local Nusselt and Sherwood numbers at both cold walls of the enclosure. The simulations provide a deeper insight into enclosure flows involving electrically conducting nanofluids in advanced processing systems for nanomaterials and hybrid fuel cells utilizing electromagnetic and liquid fuel technologies.</p>\",\"PeriodicalId\":9400,\"journal\":{\"name\":\"Canadian Journal of Chemical Engineering\",\"volume\":\"102 10\",\"pages\":\"3639-3660\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25300\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25300","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Numerical simulation of natural convection in a rectangular enclosure filled with porous medium saturated with magnetic nanofluid using Buongiorno's two-component model
Motivated by studying emerging nanofluid-based magnetic fuel cells and hybrid direct absorber solar collectors, a numerical study is presented for buoyancy-driven flow in a vertical enclosure containing a porous medium saturated with magnetized nanofluid flow under a transverse static magnetic field. The enclosure features adiabatic side walls and vertical heat slits, ensuring consistent cold temperatures on the lower and upper bounded walls. The side walls of the regime are insulated, and the hot slits are centrally located on these walls. The finite difference method (FDM) is applied to employ the transformed dimensionless vorticity–stream function (VSF) formulation of the transport equations. The impact of pertinent parameters on isotherm, streamline, iso-concentration, and average Nusselt and Sherwood numbers are visualized with contour plots and graphs. Increasing Darcy number values tend to amplify the isotherm magnitudes. Higher Hartmann (magnetic) number values, on the other hand, lead to a reduction in local Nusselt number profiles but do not significantly modify the local Sherwood number. The porous medium permeability, as simulated via the Darcy number, has a strong impact on streamlines, thermal contours, and iso-concentrations. A reduction in Darcy's number suppresses local Nusselt and Sherwood numbers, whereas an elevation in Rayleigh's number enhances them. Increasing the Buongiorno nanoscale Brownian motion parameter enhances local Nusselt and Sherwood numbers at both cold walls of the enclosure. The simulations provide a deeper insight into enclosure flows involving electrically conducting nanofluids in advanced processing systems for nanomaterials and hybrid fuel cells utilizing electromagnetic and liquid fuel technologies.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.