{"title":"白云石的热行为:简短回顾","authors":"L. C. Resio","doi":"10.1007/s00269-024-01272-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the present review work, it is proposed to carry out a bibliographic analysis about the thermal behaviour of the dolomitic mineral. The state of the art of dolomite currently indicates a growing use as a refractory material due to the cheaper alternative it represents compared to other materials such as magnesium oxide. The importance of dolomite apart from its application in the steel industry lies in the fact that it has expanded to other industrial fields such as the production of catalysts, catalyst supports, and industrial effluent purification materials. In these and other applications, understanding the thermal behaviour of the material is necessary to evaluate the feasibility of application. In this review, the different experimental proposals developed over time in terms of thermal behaviour are studied, emphasizing the reaction mechanisms that have been proposed in different investigations.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dolomite thermal behaviour: A short review\",\"authors\":\"L. C. Resio\",\"doi\":\"10.1007/s00269-024-01272-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present review work, it is proposed to carry out a bibliographic analysis about the thermal behaviour of the dolomitic mineral. The state of the art of dolomite currently indicates a growing use as a refractory material due to the cheaper alternative it represents compared to other materials such as magnesium oxide. The importance of dolomite apart from its application in the steel industry lies in the fact that it has expanded to other industrial fields such as the production of catalysts, catalyst supports, and industrial effluent purification materials. In these and other applications, understanding the thermal behaviour of the material is necessary to evaluate the feasibility of application. In this review, the different experimental proposals developed over time in terms of thermal behaviour are studied, emphasizing the reaction mechanisms that have been proposed in different investigations.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":\"51 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-024-01272-x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-024-01272-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
In the present review work, it is proposed to carry out a bibliographic analysis about the thermal behaviour of the dolomitic mineral. The state of the art of dolomite currently indicates a growing use as a refractory material due to the cheaper alternative it represents compared to other materials such as magnesium oxide. The importance of dolomite apart from its application in the steel industry lies in the fact that it has expanded to other industrial fields such as the production of catalysts, catalyst supports, and industrial effluent purification materials. In these and other applications, understanding the thermal behaviour of the material is necessary to evaluate the feasibility of application. In this review, the different experimental proposals developed over time in terms of thermal behaviour are studied, emphasizing the reaction mechanisms that have been proposed in different investigations.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)