基于概率性能的结构防火设计:以危害为中心、以后果为导向的视角

IF 2.3 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Andrea Franchini, Carmine Galasso, Jose L. Torero
{"title":"基于概率性能的结构防火设计:以危害为中心、以后果为导向的视角","authors":"Andrea Franchini, Carmine Galasso, Jose L. Torero","doi":"10.1007/s10694-023-01541-1","DOIUrl":null,"url":null,"abstract":"<p>Risk-based design and assessment methods are gaining popularity in performance-based structural fire engineering. These methods usually start by defining a set of hazard scenarios to use as analysis inputs. This approach, proven highly effective for other hazard types such as earthquakes, may not be optimal for fire safety design. Indeed, the strong coupling between the fire phenomenon and structural features enables an ad-hoc design variable selection (and/or optimisation) to reduce fire intensity, making fire scenarios additional design outputs. In addition, such a coupling effect implies that fire scenarios maximising consequences are structure specific. Building on these considerations, this paper discusses the limitations that arise at different analysis steps (i.e., fire-scenario and intensity treatment, identifying fire intensity measures, probabilistic fire hazard analysis, developing fire fragility models, and risk calculation) when using conventional risk-based approaches for design purposes. Furthermore, it compares such approaches with a fire safety design methodology (the Consequence-oriented Fire intensity Optimisation, CFO, approach) that addresses the identified limitations. The potential benefits of integrating the two approaches are also discussed. Finally, the fire design of a simplified steel-girder bridge is introduced as an illustrative example, comparing the consequence metrics and design updating strategies resulting from the two approaches.</p>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Performance-based Fire Design of Structures: A Hazard-Centred and Consequence-Oriented Perspective\",\"authors\":\"Andrea Franchini, Carmine Galasso, Jose L. Torero\",\"doi\":\"10.1007/s10694-023-01541-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Risk-based design and assessment methods are gaining popularity in performance-based structural fire engineering. These methods usually start by defining a set of hazard scenarios to use as analysis inputs. This approach, proven highly effective for other hazard types such as earthquakes, may not be optimal for fire safety design. Indeed, the strong coupling between the fire phenomenon and structural features enables an ad-hoc design variable selection (and/or optimisation) to reduce fire intensity, making fire scenarios additional design outputs. In addition, such a coupling effect implies that fire scenarios maximising consequences are structure specific. Building on these considerations, this paper discusses the limitations that arise at different analysis steps (i.e., fire-scenario and intensity treatment, identifying fire intensity measures, probabilistic fire hazard analysis, developing fire fragility models, and risk calculation) when using conventional risk-based approaches for design purposes. Furthermore, it compares such approaches with a fire safety design methodology (the Consequence-oriented Fire intensity Optimisation, CFO, approach) that addresses the identified limitations. The potential benefits of integrating the two approaches are also discussed. Finally, the fire design of a simplified steel-girder bridge is introduced as an illustrative example, comparing the consequence metrics and design updating strategies resulting from the two approaches.</p>\",\"PeriodicalId\":558,\"journal\":{\"name\":\"Fire Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10694-023-01541-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10694-023-01541-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于风险的设计和评估方法在基于性能的结构防火工程中越来越受欢迎。这些方法通常首先定义一组危险情景作为分析输入。这种方法在地震等其他灾害类型中被证明非常有效,但在消防安全设计中可能并非最佳选择。事实上,火灾现象与结构特征之间的强耦合性可以通过临时选择设计变量(和/或优化)来降低火灾强度,从而使火灾情景成为额外的设计输出。此外,这种耦合效应还意味着,使火灾后果最大化的火灾方案是针对具体结构的。基于这些考虑,本文讨论了在使用传统的基于风险的方法进行设计时,在不同分析步骤(即火灾情景和强度处理、确定火灾强度措施、火灾危害概率分析、开发火灾脆性模型和风险计算)中出现的局限性。此外,本报告还将这些方法与解决已发现局限性的消防安全设计方法(以后果为导向的火灾强度优化方法,CFO)进行了比较。此外,还讨论了将这两种方法进行整合的潜在益处。最后,以一座简化钢梁桥的防火设计为例,对两种方法得出的后果指标和设计更新策略进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Probabilistic Performance-based Fire Design of Structures: A Hazard-Centred and Consequence-Oriented Perspective

Probabilistic Performance-based Fire Design of Structures: A Hazard-Centred and Consequence-Oriented Perspective

Risk-based design and assessment methods are gaining popularity in performance-based structural fire engineering. These methods usually start by defining a set of hazard scenarios to use as analysis inputs. This approach, proven highly effective for other hazard types such as earthquakes, may not be optimal for fire safety design. Indeed, the strong coupling between the fire phenomenon and structural features enables an ad-hoc design variable selection (and/or optimisation) to reduce fire intensity, making fire scenarios additional design outputs. In addition, such a coupling effect implies that fire scenarios maximising consequences are structure specific. Building on these considerations, this paper discusses the limitations that arise at different analysis steps (i.e., fire-scenario and intensity treatment, identifying fire intensity measures, probabilistic fire hazard analysis, developing fire fragility models, and risk calculation) when using conventional risk-based approaches for design purposes. Furthermore, it compares such approaches with a fire safety design methodology (the Consequence-oriented Fire intensity Optimisation, CFO, approach) that addresses the identified limitations. The potential benefits of integrating the two approaches are also discussed. Finally, the fire design of a simplified steel-girder bridge is introduced as an illustrative example, comparing the consequence metrics and design updating strategies resulting from the two approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fire Technology
Fire Technology 工程技术-材料科学:综合
CiteScore
6.60
自引率
14.70%
发文量
137
审稿时长
7.5 months
期刊介绍: Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis. The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large. It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信