E. S. Tropin, M. P. Popov, R. D. Gus’kov, A. P. Nemudry
{"title":"准平衡模式下复杂氧化物 La2NiO4 + δ 的高温氧释放","authors":"E. S. Tropin, M. P. Popov, R. D. Gus’kov, A. P. Nemudry","doi":"10.1134/s102319352403011x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A continuous quasi-equilibrium phase diagram δ(<i>p</i>O<sub>2</sub>, <i>T</i>) of a nonstoichiometric oxide La<sub>2</sub>NiO<sub>4 + δ</sub> with the layered perovskite-like Ruddlesden–Popper structure is obtained by the method of quasi-equilibrium oxygen release. The thermodynamic parameters are determined as a function of the oxide nonstoichiometry δ. Calculations are carried out within the framework of the localized-electron and itinerant-electron models which are used for description of the defect structure of ferrites and cobaltites, respectively. It is shown that the specific features of the phase diagram can be related to the electronic density of states near the Fermi level.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"01 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Temperature Oxygen Release from Complex Oxide La2NiO4 + δ in Quasi-Equilibrium Mode\",\"authors\":\"E. S. Tropin, M. P. Popov, R. D. Gus’kov, A. P. Nemudry\",\"doi\":\"10.1134/s102319352403011x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A continuous quasi-equilibrium phase diagram δ(<i>p</i>O<sub>2</sub>, <i>T</i>) of a nonstoichiometric oxide La<sub>2</sub>NiO<sub>4 + δ</sub> with the layered perovskite-like Ruddlesden–Popper structure is obtained by the method of quasi-equilibrium oxygen release. The thermodynamic parameters are determined as a function of the oxide nonstoichiometry δ. Calculations are carried out within the framework of the localized-electron and itinerant-electron models which are used for description of the defect structure of ferrites and cobaltites, respectively. It is shown that the specific features of the phase diagram can be related to the electronic density of states near the Fermi level.</p>\",\"PeriodicalId\":760,\"journal\":{\"name\":\"Russian Journal of Electrochemistry\",\"volume\":\"01 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s102319352403011x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s102319352403011x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
High-Temperature Oxygen Release from Complex Oxide La2NiO4 + δ in Quasi-Equilibrium Mode
Abstract
A continuous quasi-equilibrium phase diagram δ(pO2, T) of a nonstoichiometric oxide La2NiO4 + δ with the layered perovskite-like Ruddlesden–Popper structure is obtained by the method of quasi-equilibrium oxygen release. The thermodynamic parameters are determined as a function of the oxide nonstoichiometry δ. Calculations are carried out within the framework of the localized-electron and itinerant-electron models which are used for description of the defect structure of ferrites and cobaltites, respectively. It is shown that the specific features of the phase diagram can be related to the electronic density of states near the Fermi level.
期刊介绍:
Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.