Zhongming Chen, Zhijian Du, La Li, Kai Jiang, Di Chen, Guozhen Shen
{"title":"具有多通道离子凝胶电解质和 Ti3C2Tx MXene 复合电极协同效应的高塞贝克系数热充电超级电容器","authors":"Zhongming Chen, Zhijian Du, La Li, Kai Jiang, Di Chen, Guozhen Shen","doi":"10.1002/eem2.12756","DOIUrl":null,"url":null,"abstract":"<p>Thermally chargeable supercapacitors can collect low-grade heat generated by the human body and convert it into electricity as a power supply unit for wearable electronics. However, the low Seebeck coefficient and heat-to-electricity conversion efficiency hinder further application. In this paper, we designed a high-performance thermally chargeable supercapacitor device composed of ZnMn<sub>2</sub>O<sub>4</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene composites (ZMO@Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene) electrode and UIO-66 metal–organic framework doped multichannel polyvinylidene fluoridehexafluoro-propylene ionogel electrolyte, which realized the thermoelectric conversion and electrical energy storage at the same time. This thermally chargeable supercapacitor device exhibited a high Seebeck coefficient of 55.4 mV K<sup>−1</sup>, thermal voltage of 243 mV, and outstanding heat-to-electricity conversion efficiency of up to 6.48% at the temperature difference of 4.4 K. In addition, this device showed excellent charge–discharge cycling stability at high-temperature differences (3 K) and low-temperature differences (1 K), respectively. Connecting two thermally chargeable supercapacitor units in series, the generated output voltage of 500 mV further confirmed the stability of devices. When a single device was worn on the arm, a thermal voltage of 208.3 mV was obtained indicating the possibility of application in wearable electronics.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12756","citationCount":"0","resultStr":"{\"title\":\"High Seebeck Coefficient Thermally Chargeable Supercapacitor with Synergistic Effect of Multichannel Ionogel Electrolyte and Ti3C2Tx MXene-Based Composite Electrode\",\"authors\":\"Zhongming Chen, Zhijian Du, La Li, Kai Jiang, Di Chen, Guozhen Shen\",\"doi\":\"10.1002/eem2.12756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermally chargeable supercapacitors can collect low-grade heat generated by the human body and convert it into electricity as a power supply unit for wearable electronics. However, the low Seebeck coefficient and heat-to-electricity conversion efficiency hinder further application. In this paper, we designed a high-performance thermally chargeable supercapacitor device composed of ZnMn<sub>2</sub>O<sub>4</sub>@Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene composites (ZMO@Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene) electrode and UIO-66 metal–organic framework doped multichannel polyvinylidene fluoridehexafluoro-propylene ionogel electrolyte, which realized the thermoelectric conversion and electrical energy storage at the same time. This thermally chargeable supercapacitor device exhibited a high Seebeck coefficient of 55.4 mV K<sup>−1</sup>, thermal voltage of 243 mV, and outstanding heat-to-electricity conversion efficiency of up to 6.48% at the temperature difference of 4.4 K. In addition, this device showed excellent charge–discharge cycling stability at high-temperature differences (3 K) and low-temperature differences (1 K), respectively. Connecting two thermally chargeable supercapacitor units in series, the generated output voltage of 500 mV further confirmed the stability of devices. When a single device was worn on the arm, a thermal voltage of 208.3 mV was obtained indicating the possibility of application in wearable electronics.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12756\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12756\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12756","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High Seebeck Coefficient Thermally Chargeable Supercapacitor with Synergistic Effect of Multichannel Ionogel Electrolyte and Ti3C2Tx MXene-Based Composite Electrode
Thermally chargeable supercapacitors can collect low-grade heat generated by the human body and convert it into electricity as a power supply unit for wearable electronics. However, the low Seebeck coefficient and heat-to-electricity conversion efficiency hinder further application. In this paper, we designed a high-performance thermally chargeable supercapacitor device composed of ZnMn2O4@Ti3C2Tx MXene composites (ZMO@Ti3C2Tx MXene) electrode and UIO-66 metal–organic framework doped multichannel polyvinylidene fluoridehexafluoro-propylene ionogel electrolyte, which realized the thermoelectric conversion and electrical energy storage at the same time. This thermally chargeable supercapacitor device exhibited a high Seebeck coefficient of 55.4 mV K−1, thermal voltage of 243 mV, and outstanding heat-to-electricity conversion efficiency of up to 6.48% at the temperature difference of 4.4 K. In addition, this device showed excellent charge–discharge cycling stability at high-temperature differences (3 K) and low-temperature differences (1 K), respectively. Connecting two thermally chargeable supercapacitor units in series, the generated output voltage of 500 mV further confirmed the stability of devices. When a single device was worn on the arm, a thermal voltage of 208.3 mV was obtained indicating the possibility of application in wearable electronics.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.