Zahra Ahaliabadeh, Ville Miikkulainen, Miia Mäntymäki, Mattia Colalongo, Seyedabolfazl Mousavihashemi, Lide Yao, Hua Jiang, Jouko Lahtinen, Timo Kankaanpää, Tanja Kallio
{"title":"用于高性能锂离子电池的稳定镍-瑞克层氧化物电极","authors":"Zahra Ahaliabadeh, Ville Miikkulainen, Miia Mäntymäki, Mattia Colalongo, Seyedabolfazl Mousavihashemi, Lide Yao, Hua Jiang, Jouko Lahtinen, Timo Kankaanpää, Tanja Kallio","doi":"10.1002/eem2.12741","DOIUrl":null,"url":null,"abstract":"<p>Next-generation Li-ion batteries are expected to exhibit superior energy and power density, along with extended cycle life. Ni-rich high-capacity layered nickel manganese cobalt oxide electrode materials (NMC) hold promise in achieving these objectives, despite facing challenges such as capacity fade due to various degradation modes. Crack formation within NMC-based cathode secondary particles, leading to parasitic reactions and the formation of inactive crystal structures, is a critical degradation mechanism. Mechanical and chemical degradation further deteriorate capacity and lifetime. To mitigate these issues, an artificial cathode electrolyte interphase can be applied to the active material before battery cycling. While atomic layer deposition (ALD) has been extensively explored for active material coatings, molecular layer deposition (MLD) offers a complementary approach. When combined with ALD, MLD enables the deposition of flexible hybrid coatings that can accommodate electrode material volume changes during battery operation. This study focuses on depositing <span></span><math>\n <mrow>\n <msub>\n <mi>TiO</mi>\n <mn>2</mn>\n </msub>\n </mrow></math>-titanium terephthalate thin films on a <span></span><math>\n <mrow>\n <msub>\n <mtext>LiNi</mtext>\n <mn>0.8</mn>\n </msub>\n <msub>\n <mi>Mn</mi>\n <mn>0.1</mn>\n </msub>\n <msub>\n <mi>Co</mi>\n <mn>0.1</mn>\n </msub>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow></math> electrode via ALD-MLD. The electrochemical evaluation demonstrates favorable lithium-ion kinetics and reduced electrolyte decomposition. Overall, the films deposited through ALD-MLD exhibit promising features as flexible and protective coatings for high-energy lithium-ion battery electrodes, offering potential contributions to the enhancement of advanced battery technologies and supporting the growth of the EV and stationary battery industries.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12741","citationCount":"0","resultStr":"{\"title\":\"Stabilized Nickel-Rich-Layered Oxide Electrodes for High-Performance Lithium-Ion Batteries\",\"authors\":\"Zahra Ahaliabadeh, Ville Miikkulainen, Miia Mäntymäki, Mattia Colalongo, Seyedabolfazl Mousavihashemi, Lide Yao, Hua Jiang, Jouko Lahtinen, Timo Kankaanpää, Tanja Kallio\",\"doi\":\"10.1002/eem2.12741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Next-generation Li-ion batteries are expected to exhibit superior energy and power density, along with extended cycle life. Ni-rich high-capacity layered nickel manganese cobalt oxide electrode materials (NMC) hold promise in achieving these objectives, despite facing challenges such as capacity fade due to various degradation modes. Crack formation within NMC-based cathode secondary particles, leading to parasitic reactions and the formation of inactive crystal structures, is a critical degradation mechanism. Mechanical and chemical degradation further deteriorate capacity and lifetime. To mitigate these issues, an artificial cathode electrolyte interphase can be applied to the active material before battery cycling. While atomic layer deposition (ALD) has been extensively explored for active material coatings, molecular layer deposition (MLD) offers a complementary approach. When combined with ALD, MLD enables the deposition of flexible hybrid coatings that can accommodate electrode material volume changes during battery operation. This study focuses on depositing <span></span><math>\\n <mrow>\\n <msub>\\n <mi>TiO</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow></math>-titanium terephthalate thin films on a <span></span><math>\\n <mrow>\\n <msub>\\n <mtext>LiNi</mtext>\\n <mn>0.8</mn>\\n </msub>\\n <msub>\\n <mi>Mn</mi>\\n <mn>0.1</mn>\\n </msub>\\n <msub>\\n <mi>Co</mi>\\n <mn>0.1</mn>\\n </msub>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow></math> electrode via ALD-MLD. The electrochemical evaluation demonstrates favorable lithium-ion kinetics and reduced electrolyte decomposition. Overall, the films deposited through ALD-MLD exhibit promising features as flexible and protective coatings for high-energy lithium-ion battery electrodes, offering potential contributions to the enhancement of advanced battery technologies and supporting the growth of the EV and stationary battery industries.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12741\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12741\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12741","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Stabilized Nickel-Rich-Layered Oxide Electrodes for High-Performance Lithium-Ion Batteries
Next-generation Li-ion batteries are expected to exhibit superior energy and power density, along with extended cycle life. Ni-rich high-capacity layered nickel manganese cobalt oxide electrode materials (NMC) hold promise in achieving these objectives, despite facing challenges such as capacity fade due to various degradation modes. Crack formation within NMC-based cathode secondary particles, leading to parasitic reactions and the formation of inactive crystal structures, is a critical degradation mechanism. Mechanical and chemical degradation further deteriorate capacity and lifetime. To mitigate these issues, an artificial cathode electrolyte interphase can be applied to the active material before battery cycling. While atomic layer deposition (ALD) has been extensively explored for active material coatings, molecular layer deposition (MLD) offers a complementary approach. When combined with ALD, MLD enables the deposition of flexible hybrid coatings that can accommodate electrode material volume changes during battery operation. This study focuses on depositing -titanium terephthalate thin films on a electrode via ALD-MLD. The electrochemical evaluation demonstrates favorable lithium-ion kinetics and reduced electrolyte decomposition. Overall, the films deposited through ALD-MLD exhibit promising features as flexible and protective coatings for high-energy lithium-ion battery electrodes, offering potential contributions to the enhancement of advanced battery technologies and supporting the growth of the EV and stationary battery industries.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.