关于等距坐标下各向同性浅壳的非线性边界问题的可解性问题

IF 0.5 Q3 MATHEMATICS
S. N. Timergaliev
{"title":"关于等距坐标下各向同性浅壳的非线性边界问题的可解性问题","authors":"S. N. Timergaliev","doi":"10.3103/s1066369x2470004x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The solvability of a boundary value problem for a system of five nonlinear second-order partial differential equations under given nonlinear boundary conditions, which describes the equilibrium state of elastic flat inhomogeneous isotropic shells with loose edges in the framework of the Timoshenko shear model, referred to isometric coordinates, is studied. The boundary value problem is reduced to a nonlinear operator equation with respect to generalized displacements in a Sobolev space, with the solvability of this equation being established using the contraction mapping principle.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"32 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Problem of Solvability of Nonlinear Boundary Value Problems for Shallow Isotropic Shells of Timoshenko Type in Isometric Coordinates\",\"authors\":\"S. N. Timergaliev\",\"doi\":\"10.3103/s1066369x2470004x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The solvability of a boundary value problem for a system of five nonlinear second-order partial differential equations under given nonlinear boundary conditions, which describes the equilibrium state of elastic flat inhomogeneous isotropic shells with loose edges in the framework of the Timoshenko shear model, referred to isometric coordinates, is studied. The boundary value problem is reduced to a nonlinear operator equation with respect to generalized displacements in a Sobolev space, with the solvability of this equation being established using the contraction mapping principle.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x2470004x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x2470004x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了在给定非线性边界条件下五个非线性二阶偏微分方程系的边界值问题的可解性,该问题描述了在蒂莫申科剪切模型框架内具有松散边缘的弹性扁平非均质各向同性壳的平衡状态,并参考了等距坐标。边界值问题被简化为一个关于索波列夫空间中广义位移的非线性算子方程,并利用收缩映射原理确定了该方程的可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Problem of Solvability of Nonlinear Boundary Value Problems for Shallow Isotropic Shells of Timoshenko Type in Isometric Coordinates

Abstract

The solvability of a boundary value problem for a system of five nonlinear second-order partial differential equations under given nonlinear boundary conditions, which describes the equilibrium state of elastic flat inhomogeneous isotropic shells with loose edges in the framework of the Timoshenko shear model, referred to isometric coordinates, is studied. The boundary value problem is reduced to a nonlinear operator equation with respect to generalized displacements in a Sobolev space, with the solvability of this equation being established using the contraction mapping principle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信