Simone Ribeiro Lucho, Marcelo Nogueira do Amaral, Valmor João Bianchi, Lorena Almagro, María Ángeles Ferrer, Antonio Asensio Calderón, Eugenia Jacira Bolacel Braga
{"title":"SrUGT76G1 的测序分析和酶活性测定揭示了甜叶菊植物中 Rebaudioside-A 的开关生产机制","authors":"Simone Ribeiro Lucho, Marcelo Nogueira do Amaral, Valmor João Bianchi, Lorena Almagro, María Ángeles Ferrer, Antonio Asensio Calderón, Eugenia Jacira Bolacel Braga","doi":"10.1007/s13562-024-00888-y","DOIUrl":null,"url":null,"abstract":"<p>Stevia plants are well-known for their ability to synthesize steviol glycosides (SGs), a natural sweetener blend. The principal SGs include stevioside (STV) and Rebaudioside-A (Reb-A), with the latter exhibiting superior sweetness and organoleptic properties. UDP glucosyltransferase-76G1 (UGT76G1) is responsible for converting STV to Reb-A, determining the intensity of sweetness. A better understanding of the structure/activity of SrUGT76G1 could provide insights into Reb-A production in stevia plants. To this end, a combination of enzymatic assays and sequencing analysis was performed using two stevia genotypes (Brazilian and Spanish) with contrasting Reb-A production capabilities (off/on). Relative expression of <i>SrUGT76G1</i> gene showed remarkably higher expression (~ threefold) in Spanish samples compared to Brazilian ones. Foliar protein fractions (crude or partially purified extract) from Brazil plants were unable to convert STV into Reb-A under in vitro conditions, resulting in undetectable levels of Reb-A by HPLC. Molecular analyses revealed that the Brazilian <i>SrUGT76G1</i> gene not only presents a premature stop codon, resulting in the absence of PSPG motif responsible for the binding of glycosyl groups, but also exhibits mutations affecting key amino acid residues in the acceptor-binding pocket. These alterations provide a plausible explanation for the Brazilian protein inability to catalyze the transformation of STV into Reb-A.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequencing analysis and enzyme activity assay of SrUGT76G1 revealed the mechanism toward on/off production of Rebaudioside-A in stevia plants\",\"authors\":\"Simone Ribeiro Lucho, Marcelo Nogueira do Amaral, Valmor João Bianchi, Lorena Almagro, María Ángeles Ferrer, Antonio Asensio Calderón, Eugenia Jacira Bolacel Braga\",\"doi\":\"10.1007/s13562-024-00888-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stevia plants are well-known for their ability to synthesize steviol glycosides (SGs), a natural sweetener blend. The principal SGs include stevioside (STV) and Rebaudioside-A (Reb-A), with the latter exhibiting superior sweetness and organoleptic properties. UDP glucosyltransferase-76G1 (UGT76G1) is responsible for converting STV to Reb-A, determining the intensity of sweetness. A better understanding of the structure/activity of SrUGT76G1 could provide insights into Reb-A production in stevia plants. To this end, a combination of enzymatic assays and sequencing analysis was performed using two stevia genotypes (Brazilian and Spanish) with contrasting Reb-A production capabilities (off/on). Relative expression of <i>SrUGT76G1</i> gene showed remarkably higher expression (~ threefold) in Spanish samples compared to Brazilian ones. Foliar protein fractions (crude or partially purified extract) from Brazil plants were unable to convert STV into Reb-A under in vitro conditions, resulting in undetectable levels of Reb-A by HPLC. Molecular analyses revealed that the Brazilian <i>SrUGT76G1</i> gene not only presents a premature stop codon, resulting in the absence of PSPG motif responsible for the binding of glycosyl groups, but also exhibits mutations affecting key amino acid residues in the acceptor-binding pocket. These alterations provide a plausible explanation for the Brazilian protein inability to catalyze the transformation of STV into Reb-A.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00888-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00888-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sequencing analysis and enzyme activity assay of SrUGT76G1 revealed the mechanism toward on/off production of Rebaudioside-A in stevia plants
Stevia plants are well-known for their ability to synthesize steviol glycosides (SGs), a natural sweetener blend. The principal SGs include stevioside (STV) and Rebaudioside-A (Reb-A), with the latter exhibiting superior sweetness and organoleptic properties. UDP glucosyltransferase-76G1 (UGT76G1) is responsible for converting STV to Reb-A, determining the intensity of sweetness. A better understanding of the structure/activity of SrUGT76G1 could provide insights into Reb-A production in stevia plants. To this end, a combination of enzymatic assays and sequencing analysis was performed using two stevia genotypes (Brazilian and Spanish) with contrasting Reb-A production capabilities (off/on). Relative expression of SrUGT76G1 gene showed remarkably higher expression (~ threefold) in Spanish samples compared to Brazilian ones. Foliar protein fractions (crude or partially purified extract) from Brazil plants were unable to convert STV into Reb-A under in vitro conditions, resulting in undetectable levels of Reb-A by HPLC. Molecular analyses revealed that the Brazilian SrUGT76G1 gene not only presents a premature stop codon, resulting in the absence of PSPG motif responsible for the binding of glycosyl groups, but also exhibits mutations affecting key amino acid residues in the acceptor-binding pocket. These alterations provide a plausible explanation for the Brazilian protein inability to catalyze the transformation of STV into Reb-A.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.