SparseLeakyNets: 利用时序侧信道信息对稀疏感知嵌入式神经网络进行分类预测攻击

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Saurav Maji;Kyungmi Lee;Anantha P. Chandrakasan
{"title":"SparseLeakyNets: 利用时序侧信道信息对稀疏感知嵌入式神经网络进行分类预测攻击","authors":"Saurav Maji;Kyungmi Lee;Anantha P. Chandrakasan","doi":"10.1109/LCA.2024.3397730","DOIUrl":null,"url":null,"abstract":"This letter explores security vulnerabilities in sparsity-aware optimizations for Neural Network (NN) platforms, specifically focusing on timing side-channel attacks introduced by optimizations such as skipping sparse multiplications. We propose a classification prediction attack that utilizes this timing side-channel information to mimic the NN's prediction outcomes. Our techniques were demonstrated for CIFAR-10, MNIST, and biomedical classification tasks using diverse dataflows and processing loads in timing models. The demonstrated results could predict the original classification decision with high accuracy.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"133-136"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SparseLeakyNets: Classification Prediction Attack Over Sparsity-Aware Embedded Neural Networks Using Timing Side-Channel Information\",\"authors\":\"Saurav Maji;Kyungmi Lee;Anantha P. Chandrakasan\",\"doi\":\"10.1109/LCA.2024.3397730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter explores security vulnerabilities in sparsity-aware optimizations for Neural Network (NN) platforms, specifically focusing on timing side-channel attacks introduced by optimizations such as skipping sparse multiplications. We propose a classification prediction attack that utilizes this timing side-channel information to mimic the NN's prediction outcomes. Our techniques were demonstrated for CIFAR-10, MNIST, and biomedical classification tasks using diverse dataflows and processing loads in timing models. The demonstrated results could predict the original classification decision with high accuracy.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"23 1\",\"pages\":\"133-136\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10521735/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10521735/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

这封信探讨了神经网络(NN)平台稀疏感知优化中的安全漏洞,特别关注跳过稀疏乘法等优化所引入的时序侧信道攻击。我们提出了一种分类预测攻击,利用这种时序侧信道信息来模仿神经网络的预测结果。我们的技术在 CIFAR-10、MNIST 和生物医学分类任务中进行了演示,使用了不同的数据流和时序模型中的处理负载。演示结果可以高精度预测原始分类决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SparseLeakyNets: Classification Prediction Attack Over Sparsity-Aware Embedded Neural Networks Using Timing Side-Channel Information
This letter explores security vulnerabilities in sparsity-aware optimizations for Neural Network (NN) platforms, specifically focusing on timing side-channel attacks introduced by optimizations such as skipping sparse multiplications. We propose a classification prediction attack that utilizes this timing side-channel information to mimic the NN's prediction outcomes. Our techniques were demonstrated for CIFAR-10, MNIST, and biomedical classification tasks using diverse dataflows and processing loads in timing models. The demonstrated results could predict the original classification decision with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信