Lipschitz 类函数的具体性质

IF 0.6 3区 数学 Q3 MATHEMATICS
A. Kashibadze, V. Tsagareishvili
{"title":"Lipschitz 类函数的具体性质","authors":"A. Kashibadze,&nbsp;V. Tsagareishvili","doi":"10.1007/s10474-024-01432-z","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Lipschitz class functions on [0, 1]\nand special series of their Fourier coefficients with respect to general\northonormal systems (ONS).\nThe convergence of classical Fourier series (trigonometric, Haar, Walsh systems) of Lip 1 class functions is a trivial problem and is well known. But general Fourier series, as it is known, even for the function <i>f </i>(<i>x</i>) = 1 does not converge.\nOn the other hand, we show that such series do not converge with respect to general ONSs. In the paper we find the special conditions on the functions <span>\\(\\varphi_{n}\\)</span> of the system <span>\\((\\varphi_{n})\\)</span> such that the above-mentioned series are convergent for any Lipschitz class function. The obtained result is the best possible.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"173 1","pages":"154 - 168"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specific properties of Lipschitz class functions\",\"authors\":\"A. Kashibadze,&nbsp;V. Tsagareishvili\",\"doi\":\"10.1007/s10474-024-01432-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the Lipschitz class functions on [0, 1]\\nand special series of their Fourier coefficients with respect to general\\northonormal systems (ONS).\\nThe convergence of classical Fourier series (trigonometric, Haar, Walsh systems) of Lip 1 class functions is a trivial problem and is well known. But general Fourier series, as it is known, even for the function <i>f </i>(<i>x</i>) = 1 does not converge.\\nOn the other hand, we show that such series do not converge with respect to general ONSs. In the paper we find the special conditions on the functions <span>\\\\(\\\\varphi_{n}\\\\)</span> of the system <span>\\\\((\\\\varphi_{n})\\\\)</span> such that the above-mentioned series are convergent for any Lipschitz class function. The obtained result is the best possible.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"173 1\",\"pages\":\"154 - 168\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01432-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01432-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑[0, 1]上的 Lipschitz 类函数及其关于一般正交系统(ONS)的傅里叶系数特殊级数。Lip 1 类函数的经典傅里叶级数(三角、哈氏、沃尔什系统)的收敛是一个微不足道的问题,也是众所周知的。但众所周知,即使是函数 f (x) = 1 的一般傅里叶级数也不收敛。另一方面,我们证明了此类级数在一般 ONS 方面不收敛。在本文中,我们找到了系统 \((\varphi_{n})\)的函数 \(\varphi_{n}\)的特殊条件,使得上述数列对于任何立普齐兹类函数都是收敛的。所得到的结果是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Specific properties of Lipschitz class functions

We consider the Lipschitz class functions on [0, 1] and special series of their Fourier coefficients with respect to general orthonormal systems (ONS). The convergence of classical Fourier series (trigonometric, Haar, Walsh systems) of Lip 1 class functions is a trivial problem and is well known. But general Fourier series, as it is known, even for the function f (x) = 1 does not converge. On the other hand, we show that such series do not converge with respect to general ONSs. In the paper we find the special conditions on the functions \(\varphi_{n}\) of the system \((\varphi_{n})\) such that the above-mentioned series are convergent for any Lipschitz class function. The obtained result is the best possible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信