D. S. Sitnikov, V. A. Revkova, I. V. Ilina, R. O. Shatalova, M. A. Konoplyannikov, V. A. Kalsin, V. P. Baklaushev
{"title":"高强度太赫兹辐射对人类神经祖细胞分化的影响","authors":"D. S. Sitnikov, V. A. Revkova, I. V. Ilina, R. O. Shatalova, M. A. Konoplyannikov, V. A. Kalsin, V. P. Baklaushev","doi":"10.1007/s11141-024-10321-y","DOIUrl":null,"url":null,"abstract":"<p>We present the results of studying the impact of high-intensity terahertz pulses on the differentiation of induced human neural progenitor cells (drNPCs). The differentiation was estimated using the immunocytochemical analysis, i.e., the marker of the undifferentiated cells (SOX2) and the markers of the neuronal (β-III-tubulin and MAP2b) and glial (GFAP) phenotype. The cell exposure was performed by terahertz pulses with an intensity of 21 GW/cm<sup>2</sup> and an electric field of 2.8 MV/cm for 30 min. As a result of exposure, the phenotype of induced neural progenitor cells did not differ from that of unexposed cells and the appearance of mature neurons or glial cells was not detected. The ability of the terahertz radiation to cause effects in neural cell cultures apparently requires further studies for higher exposure intensity or duration.</p>","PeriodicalId":748,"journal":{"name":"Radiophysics and Quantum Electronics","volume":"66 7-8","pages":"618 - 628"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of High-Intensity Terahertz Radiation on the Differentiation of Human Neural Progenitor Cells\",\"authors\":\"D. S. Sitnikov, V. A. Revkova, I. V. Ilina, R. O. Shatalova, M. A. Konoplyannikov, V. A. Kalsin, V. P. Baklaushev\",\"doi\":\"10.1007/s11141-024-10321-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present the results of studying the impact of high-intensity terahertz pulses on the differentiation of induced human neural progenitor cells (drNPCs). The differentiation was estimated using the immunocytochemical analysis, i.e., the marker of the undifferentiated cells (SOX2) and the markers of the neuronal (β-III-tubulin and MAP2b) and glial (GFAP) phenotype. The cell exposure was performed by terahertz pulses with an intensity of 21 GW/cm<sup>2</sup> and an electric field of 2.8 MV/cm for 30 min. As a result of exposure, the phenotype of induced neural progenitor cells did not differ from that of unexposed cells and the appearance of mature neurons or glial cells was not detected. The ability of the terahertz radiation to cause effects in neural cell cultures apparently requires further studies for higher exposure intensity or duration.</p>\",\"PeriodicalId\":748,\"journal\":{\"name\":\"Radiophysics and Quantum Electronics\",\"volume\":\"66 7-8\",\"pages\":\"618 - 628\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiophysics and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11141-024-10321-y\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiophysics and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11141-024-10321-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Influence of High-Intensity Terahertz Radiation on the Differentiation of Human Neural Progenitor Cells
We present the results of studying the impact of high-intensity terahertz pulses on the differentiation of induced human neural progenitor cells (drNPCs). The differentiation was estimated using the immunocytochemical analysis, i.e., the marker of the undifferentiated cells (SOX2) and the markers of the neuronal (β-III-tubulin and MAP2b) and glial (GFAP) phenotype. The cell exposure was performed by terahertz pulses with an intensity of 21 GW/cm2 and an electric field of 2.8 MV/cm for 30 min. As a result of exposure, the phenotype of induced neural progenitor cells did not differ from that of unexposed cells and the appearance of mature neurons or glial cells was not detected. The ability of the terahertz radiation to cause effects in neural cell cultures apparently requires further studies for higher exposure intensity or duration.
期刊介绍:
Radiophysics and Quantum Electronics contains the most recent and best Russian research on topics such as:
Radio astronomy;
Plasma astrophysics;
Ionospheric, atmospheric and oceanic physics;
Radiowave propagation;
Quantum radiophysics;
Pphysics of oscillations and waves;
Physics of plasmas;
Statistical radiophysics;
Electrodynamics;
Vacuum and plasma electronics;
Acoustics;
Solid-state electronics.
Radiophysics and Quantum Electronics is a translation of the Russian journal Izvestiya VUZ. Radiofizika, published by the Radiophysical Research Institute and N.I. Lobachevsky State University at Nizhnii Novgorod, Russia. The Russian volume-year is published in English beginning in April.
All articles are peer-reviewed.