{"title":"基于多梯度流残差结构的多类道路目标检测","authors":"Leilei Xie;Zheng Li;Fenghua Zhu","doi":"10.1109/JRFID.2024.3368226","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of false and missed detection due to the varied and dense target scale changes, the presence of occlusion, and insufficient light in the target detection task of complex road scenes for self-driving vehicles, an improved model YOLOv8-AUT based on YOLOv8 complex road target detection is proposed. Firstly, the MFR module is designed based on the multi-gradient flow residual structure of the attention mechanism, and the parallel gradient flow branches are added to the module to enrich the gradient flow of the model, so as to enhance the ability to extract the detailed information, and to improve the omission and misdetection of the small targets on the road. Secondly, the spatial pyramid network structure is improved using full-dimensional dynamic convolution to increase the sensory field of the model and improve the model’s ability to detect targets of different scales in complex backgrounds. Finally, the soft-NMS suppression algorithm is introduced to solve the problem of severe target leakage detection in obstacle-target dense regions. The experimental data show that on the BDD100K dataset, the improved algorithm improves the average accuracy mean by 7.7% compared with the original algorithm, mAP@0.5:0.9 by 5.7%, which proves that YOLOv8-AUT can better satisfy the demand for target detection in complex road scenarios of autonomous driving.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"348-356"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Class Road Target Detection Based on Multi-Gradient Flow Residual Structure\",\"authors\":\"Leilei Xie;Zheng Li;Fenghua Zhu\",\"doi\":\"10.1109/JRFID.2024.3368226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of false and missed detection due to the varied and dense target scale changes, the presence of occlusion, and insufficient light in the target detection task of complex road scenes for self-driving vehicles, an improved model YOLOv8-AUT based on YOLOv8 complex road target detection is proposed. Firstly, the MFR module is designed based on the multi-gradient flow residual structure of the attention mechanism, and the parallel gradient flow branches are added to the module to enrich the gradient flow of the model, so as to enhance the ability to extract the detailed information, and to improve the omission and misdetection of the small targets on the road. Secondly, the spatial pyramid network structure is improved using full-dimensional dynamic convolution to increase the sensory field of the model and improve the model’s ability to detect targets of different scales in complex backgrounds. Finally, the soft-NMS suppression algorithm is introduced to solve the problem of severe target leakage detection in obstacle-target dense regions. The experimental data show that on the BDD100K dataset, the improved algorithm improves the average accuracy mean by 7.7% compared with the original algorithm, mAP@0.5:0.9 by 5.7%, which proves that YOLOv8-AUT can better satisfy the demand for target detection in complex road scenarios of autonomous driving.\",\"PeriodicalId\":73291,\"journal\":{\"name\":\"IEEE journal of radio frequency identification\",\"volume\":\"8 \",\"pages\":\"348-356\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of radio frequency identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10443216/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10443216/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multi-Class Road Target Detection Based on Multi-Gradient Flow Residual Structure
Aiming at the problem of false and missed detection due to the varied and dense target scale changes, the presence of occlusion, and insufficient light in the target detection task of complex road scenes for self-driving vehicles, an improved model YOLOv8-AUT based on YOLOv8 complex road target detection is proposed. Firstly, the MFR module is designed based on the multi-gradient flow residual structure of the attention mechanism, and the parallel gradient flow branches are added to the module to enrich the gradient flow of the model, so as to enhance the ability to extract the detailed information, and to improve the omission and misdetection of the small targets on the road. Secondly, the spatial pyramid network structure is improved using full-dimensional dynamic convolution to increase the sensory field of the model and improve the model’s ability to detect targets of different scales in complex backgrounds. Finally, the soft-NMS suppression algorithm is introduced to solve the problem of severe target leakage detection in obstacle-target dense regions. The experimental data show that on the BDD100K dataset, the improved algorithm improves the average accuracy mean by 7.7% compared with the original algorithm, mAP@0.5:0.9 by 5.7%, which proves that YOLOv8-AUT can better satisfy the demand for target detection in complex road scenarios of autonomous driving.