用于雪天路面分类的数据集注释系统

Mohamed Karaa;Hakim Ghazzai;Lokman Sboui
{"title":"用于雪天路面分类的数据集注释系统","authors":"Mohamed Karaa;Hakim Ghazzai;Lokman Sboui","doi":"10.1109/OJSE.2024.3391326","DOIUrl":null,"url":null,"abstract":"In this article, we introduce an artificial-intelligence-based annotation system for a dataset of snow-covered road images. We operate on a large dataset consisting of CCTV images and time and weather metadata. The dataset is fed to a series of data processing techniques to automatically assign each image one of four snow cover categories aligned with snow removal operations. The processing pipeline includes feature learning using convolutional autoencoders and graph clustering using the Louvain community detection algorithm. The resulting dataset comprises over 41 000 images automatically annotated in different weather and time settings. We train and test multiple deep learning models to validate the annotated dataset to classify snow-covered road images. We customize the models to consider the class distribution within the dataset. We achieve precision and recall scores of 97% using an EfficientNet model trained on separate day and night image datasets and using a class-weighted loss function.","PeriodicalId":100632,"journal":{"name":"IEEE Open Journal of Systems Engineering","volume":"2 ","pages":"71-82"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505782","citationCount":"0","resultStr":"{\"title\":\"A Dataset Annotation System for Snowy Weather Road Surface Classification\",\"authors\":\"Mohamed Karaa;Hakim Ghazzai;Lokman Sboui\",\"doi\":\"10.1109/OJSE.2024.3391326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce an artificial-intelligence-based annotation system for a dataset of snow-covered road images. We operate on a large dataset consisting of CCTV images and time and weather metadata. The dataset is fed to a series of data processing techniques to automatically assign each image one of four snow cover categories aligned with snow removal operations. The processing pipeline includes feature learning using convolutional autoencoders and graph clustering using the Louvain community detection algorithm. The resulting dataset comprises over 41 000 images automatically annotated in different weather and time settings. We train and test multiple deep learning models to validate the annotated dataset to classify snow-covered road images. We customize the models to consider the class distribution within the dataset. We achieve precision and recall scores of 97% using an EfficientNet model trained on separate day and night image datasets and using a class-weighted loss function.\",\"PeriodicalId\":100632,\"journal\":{\"name\":\"IEEE Open Journal of Systems Engineering\",\"volume\":\"2 \",\"pages\":\"71-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505782\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10505782/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10505782/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于人工智能的标注系统,适用于积雪覆盖的道路图像数据集。我们对由闭路电视图像、时间和天气元数据组成的大型数据集进行操作。该数据集采用一系列数据处理技术,自动为每张图像分配与除雪作业相一致的四个雪覆盖类别之一。处理管道包括使用卷积自动编码器进行特征学习,以及使用卢万群落检测算法进行图聚类。由此产生的数据集包括 41 000 多张在不同天气和时间设置下自动标注的图像。我们训练并测试了多个深度学习模型,以验证注释数据集对积雪覆盖道路图像的分类。我们对模型进行了定制,以考虑数据集中的类别分布。我们使用在单独的白天和夜晚图像数据集上训练的 EfficientNet 模型,并使用类加权损失函数,实现了 97% 的精确度和召回分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dataset Annotation System for Snowy Weather Road Surface Classification
In this article, we introduce an artificial-intelligence-based annotation system for a dataset of snow-covered road images. We operate on a large dataset consisting of CCTV images and time and weather metadata. The dataset is fed to a series of data processing techniques to automatically assign each image one of four snow cover categories aligned with snow removal operations. The processing pipeline includes feature learning using convolutional autoencoders and graph clustering using the Louvain community detection algorithm. The resulting dataset comprises over 41 000 images automatically annotated in different weather and time settings. We train and test multiple deep learning models to validate the annotated dataset to classify snow-covered road images. We customize the models to consider the class distribution within the dataset. We achieve precision and recall scores of 97% using an EfficientNet model trained on separate day and night image datasets and using a class-weighted loss function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信