无心插柳柳成荫:脊髓损伤后脊髓刺激作为多模式神经康复平台的意外效果。

Gerson N Moreno Romero, Avery R Twyman, Maria F Bandres, Jacob Graves McPherson
{"title":"无心插柳柳成荫:脊髓损伤后脊髓刺激作为多模式神经康复平台的意外效果。","authors":"Gerson N Moreno Romero, Avery R Twyman, Maria F Bandres, Jacob Graves McPherson","doi":"10.1186/s42234-024-00144-7","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical stimulation of spinal neurons has emerged as a valuable tool to enhance rehabilitation after spinal cord injury. In separate parameterizations, it has shown promise for improving voluntary movement, reducing symptoms of autonomic dysreflexia, improving functions mediated by muscles of the pelvic floor (e.g., bowel, bladder, and sexual function), reducing spasms and spasticity, and decreasing neuropathic pain, among others. This diverse set of actions is related both to the density of sensorimotor neural networks in the spinal cord and to the intrinsic ability of electrical stimulation to modulate neural transmission in multiple spinal networks simultaneously. It also suggests that certain spinal stimulation parameterizations may be capable of providing multi-modal therapeutic benefits, which would directly address the complex, multi-faceted rehabilitation goals of people living with spinal cord injury. This review is intended to identify and characterize reports of spinal stimulation-based therapies specifically designed to provide multi-modal benefits and those that report relevant unintended effects of spinal stimulation paradigms parameterized to enhance a single consequence of spinal cord injury.</p>","PeriodicalId":72363,"journal":{"name":"Bioelectronic medicine","volume":"10 1","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094943/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unintentionally intentional: unintended effects of spinal stimulation as a platform for multi-modal neurorehabilitation after spinal cord injury.\",\"authors\":\"Gerson N Moreno Romero, Avery R Twyman, Maria F Bandres, Jacob Graves McPherson\",\"doi\":\"10.1186/s42234-024-00144-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrical stimulation of spinal neurons has emerged as a valuable tool to enhance rehabilitation after spinal cord injury. In separate parameterizations, it has shown promise for improving voluntary movement, reducing symptoms of autonomic dysreflexia, improving functions mediated by muscles of the pelvic floor (e.g., bowel, bladder, and sexual function), reducing spasms and spasticity, and decreasing neuropathic pain, among others. This diverse set of actions is related both to the density of sensorimotor neural networks in the spinal cord and to the intrinsic ability of electrical stimulation to modulate neural transmission in multiple spinal networks simultaneously. It also suggests that certain spinal stimulation parameterizations may be capable of providing multi-modal therapeutic benefits, which would directly address the complex, multi-faceted rehabilitation goals of people living with spinal cord injury. This review is intended to identify and characterize reports of spinal stimulation-based therapies specifically designed to provide multi-modal benefits and those that report relevant unintended effects of spinal stimulation paradigms parameterized to enhance a single consequence of spinal cord injury.</p>\",\"PeriodicalId\":72363,\"journal\":{\"name\":\"Bioelectronic medicine\",\"volume\":\"10 1\",\"pages\":\"12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094943/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectronic medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42234-024-00144-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronic medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42234-024-00144-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脊髓神经元电刺激已成为脊髓损伤后加强康复的重要工具。在不同的参数设置中,电刺激在改善自主运动、减轻自主神经反射障碍症状、改善由骨盆底肌肉介导的功能(如肠道、膀胱和性功能)、减轻痉挛和痉挛以及减轻神经性疼痛等方面都显示出良好的前景。这些不同的作用既与脊髓中感觉运动神经网络的密度有关,也与电刺激同时调节多个脊髓网络中神经传输的内在能力有关。这也表明,某些脊髓刺激参数可能能够提供多模式治疗效果,从而直接解决脊髓损伤患者复杂、多方面的康复目标。本综述旨在识别和描述有关脊髓刺激疗法的报告,这些疗法专门用于提供多种模式的益处,以及那些报告了脊髓刺激范例的相关意外效应的报告,这些范例的参数化旨在增强脊髓损伤的单一后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unintentionally intentional: unintended effects of spinal stimulation as a platform for multi-modal neurorehabilitation after spinal cord injury.

Electrical stimulation of spinal neurons has emerged as a valuable tool to enhance rehabilitation after spinal cord injury. In separate parameterizations, it has shown promise for improving voluntary movement, reducing symptoms of autonomic dysreflexia, improving functions mediated by muscles of the pelvic floor (e.g., bowel, bladder, and sexual function), reducing spasms and spasticity, and decreasing neuropathic pain, among others. This diverse set of actions is related both to the density of sensorimotor neural networks in the spinal cord and to the intrinsic ability of electrical stimulation to modulate neural transmission in multiple spinal networks simultaneously. It also suggests that certain spinal stimulation parameterizations may be capable of providing multi-modal therapeutic benefits, which would directly address the complex, multi-faceted rehabilitation goals of people living with spinal cord injury. This review is intended to identify and characterize reports of spinal stimulation-based therapies specifically designed to provide multi-modal benefits and those that report relevant unintended effects of spinal stimulation paradigms parameterized to enhance a single consequence of spinal cord injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信