{"title":"利用基于生物氧化锌的超疏水膜进行油水分离的环保简便方法。","authors":"A Beagan, A S Elakany, Z Yang, M E Mohamed","doi":"10.2166/wst.2024.140","DOIUrl":null,"url":null,"abstract":"<p><p>This manuscript presents a novel approach for developing an environmentally friendly and effective oil-water separation membrane. Achieving a superhydrophobic (SH) coating on textile fabric (TF) involved a two-step process. Initially, the surface roughness was enhanced by applying bio-zinc oxide (ZnO) nanoparticles obtained from <i>Thymbra spicata</i> L. Subsequently, the roughened surface was modified with stearic acid, a material known for its low surface energy. The bio-ZnO nanoparticles exhibit a circular morphology with an average size of 21 nm. The coating demonstrated remarkable mechanical stability, maintaining SH properties even after an abrasion length of 300 mm. Chemical stability studies revealed that the prepared membrane retained SH properties within a pH range of 5-11, which ensures robust performance. Absorption capacity measurements showcased different capacities for <i>n</i>-hexane (Hex), corn oil (C.O), and silicone oil (S.O), with consistent performance over 10 absorption-desorption cycles. High oil-water separation efficiencies were achieved for hexane, C.O, and S.O, emphasizing the coating's versatility. Flux rate measurements demonstrated that oil passed through the membrane efficiently, with the highest flux observed for Hex. The prepared SH membrane has superior mechanical and chemical stability and high separation efficiencies, which positions it as a promising candidate for diverse industrial applications.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"89 9","pages":"2512-2522"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An eco-friendly and facile method for oil-water separation using the bio-Zn oxide-based superhydrophobic membrane.\",\"authors\":\"A Beagan, A S Elakany, Z Yang, M E Mohamed\",\"doi\":\"10.2166/wst.2024.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This manuscript presents a novel approach for developing an environmentally friendly and effective oil-water separation membrane. Achieving a superhydrophobic (SH) coating on textile fabric (TF) involved a two-step process. Initially, the surface roughness was enhanced by applying bio-zinc oxide (ZnO) nanoparticles obtained from <i>Thymbra spicata</i> L. Subsequently, the roughened surface was modified with stearic acid, a material known for its low surface energy. The bio-ZnO nanoparticles exhibit a circular morphology with an average size of 21 nm. The coating demonstrated remarkable mechanical stability, maintaining SH properties even after an abrasion length of 300 mm. Chemical stability studies revealed that the prepared membrane retained SH properties within a pH range of 5-11, which ensures robust performance. Absorption capacity measurements showcased different capacities for <i>n</i>-hexane (Hex), corn oil (C.O), and silicone oil (S.O), with consistent performance over 10 absorption-desorption cycles. High oil-water separation efficiencies were achieved for hexane, C.O, and S.O, emphasizing the coating's versatility. Flux rate measurements demonstrated that oil passed through the membrane efficiently, with the highest flux observed for Hex. The prepared SH membrane has superior mechanical and chemical stability and high separation efficiencies, which positions it as a promising candidate for diverse industrial applications.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":\"89 9\",\"pages\":\"2512-2522\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.140\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.140","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
本手稿介绍了一种开发环保、有效的油水分离膜的新方法。在纺织织物(TF)上实现超疏水性(SH)涂层涉及两个步骤。首先,通过使用从刺五加(Thymbra spicata L)中提取的生物氧化锌(ZnO)纳米颗粒来增强表面粗糙度;然后,使用硬脂酸(一种以低表面能著称的材料)对粗糙表面进行改性。生物氧化锌纳米颗粒呈现出平均尺寸为 21 纳米的圆形形态。涂层具有出色的机械稳定性,即使在磨损 300 毫米后仍能保持 SH 特性。化学稳定性研究表明,所制备的膜在 pH 值为 5-11 的范围内仍能保持 SH 特性,从而确保了其稳定的性能。吸收能力测量显示了对正己烷(Hex)、玉米油(C.O)和硅油(S.O)的不同吸收能力,在 10 次吸收-解吸循环中性能始终如一。正己烷、C.O 和 S.O 均实现了较高的油水分离效率,凸显了涂层的多功能性。通量率测量结果表明,油类能高效地通过膜,其中正己烷的通量最高。所制备的 SH 膜具有出色的机械和化学稳定性以及高分离效率,因此有望应用于多种工业领域。
An eco-friendly and facile method for oil-water separation using the bio-Zn oxide-based superhydrophobic membrane.
This manuscript presents a novel approach for developing an environmentally friendly and effective oil-water separation membrane. Achieving a superhydrophobic (SH) coating on textile fabric (TF) involved a two-step process. Initially, the surface roughness was enhanced by applying bio-zinc oxide (ZnO) nanoparticles obtained from Thymbra spicata L. Subsequently, the roughened surface was modified with stearic acid, a material known for its low surface energy. The bio-ZnO nanoparticles exhibit a circular morphology with an average size of 21 nm. The coating demonstrated remarkable mechanical stability, maintaining SH properties even after an abrasion length of 300 mm. Chemical stability studies revealed that the prepared membrane retained SH properties within a pH range of 5-11, which ensures robust performance. Absorption capacity measurements showcased different capacities for n-hexane (Hex), corn oil (C.O), and silicone oil (S.O), with consistent performance over 10 absorption-desorption cycles. High oil-water separation efficiencies were achieved for hexane, C.O, and S.O, emphasizing the coating's versatility. Flux rate measurements demonstrated that oil passed through the membrane efficiently, with the highest flux observed for Hex. The prepared SH membrane has superior mechanical and chemical stability and high separation efficiencies, which positions it as a promising candidate for diverse industrial applications.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.