Kevin van Waaij, Fehmi Keçe, Marta de Riva, Reza Alizadeh Dehnavi, Adrianus P Wijnmaalen, Sebastiaan R D Piers, Bart J Mertens, Katja Zeppenfeld, Serge A Trines
{"title":"低温球囊消融后早期再连接预测模型的验证。","authors":"Kevin van Waaij, Fehmi Keçe, Marta de Riva, Reza Alizadeh Dehnavi, Adrianus P Wijnmaalen, Sebastiaan R D Piers, Bart J Mertens, Katja Zeppenfeld, Serge A Trines","doi":"10.1007/s10840-024-01811-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We previously developed an early reconnection/dormant conduction (ERC) prediction model for cryoballoon ablation to avoid a 30-min waiting period with adenosine infusion. We now aimed to validate this model based on time to isolation, number of unsuccessful cryo-applications, and nadir balloon temperature.</p><p><strong>Methods: </strong>Consecutive atrial fibrillation patients who underwent their first cryoballoon ablation in 2018-2019 at the Leiden University Medical Center were included. Model performance at the previous and at a new optimal cutoff value was determined.</p><p><strong>Results: </strong>A total of 201 patients were included (85.57% paroxysmal AF, 139 male, median age 61 years (IQR 53-69)). ERC was found in 35 of 201 included patients (17.41%) and in 41 of 774 veins (5.30%). In the present study population, the previous cutoff value of - 6.7 provided a sensitivity of 37.84% (previously 70%) and a specificity of 89.07% (previously 86%). Shifting the cutoff value to - 7.2 in both study populations resulted in a sensitivity of 72.50% and 72.97% and a specificity of 78.22% and 78.63% in data from the previous and present study respectively. Negative predictive values were 96.55% and 98.11%. Applying the model on the 101 patients of the present study with all necessary data for all veins resulted in 43 out of 101 patients (43%) not requiring a 30-min waiting period with adenosine testing. Two patients (2%) with ERC would have been missed when applying the model.</p><p><strong>Conclusions: </strong>The previously established ERC prediction model performs well, recommending its use for centers routinely using adenosine testing following PVI.</p>","PeriodicalId":16202,"journal":{"name":"Journal of Interventional Cardiac Electrophysiology","volume":" ","pages":"1623-1634"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522115/pdf/","citationCount":"0","resultStr":"{\"title\":\"Validation of a prediction model for early reconnection after cryoballoon ablation.\",\"authors\":\"Kevin van Waaij, Fehmi Keçe, Marta de Riva, Reza Alizadeh Dehnavi, Adrianus P Wijnmaalen, Sebastiaan R D Piers, Bart J Mertens, Katja Zeppenfeld, Serge A Trines\",\"doi\":\"10.1007/s10840-024-01811-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We previously developed an early reconnection/dormant conduction (ERC) prediction model for cryoballoon ablation to avoid a 30-min waiting period with adenosine infusion. We now aimed to validate this model based on time to isolation, number of unsuccessful cryo-applications, and nadir balloon temperature.</p><p><strong>Methods: </strong>Consecutive atrial fibrillation patients who underwent their first cryoballoon ablation in 2018-2019 at the Leiden University Medical Center were included. Model performance at the previous and at a new optimal cutoff value was determined.</p><p><strong>Results: </strong>A total of 201 patients were included (85.57% paroxysmal AF, 139 male, median age 61 years (IQR 53-69)). ERC was found in 35 of 201 included patients (17.41%) and in 41 of 774 veins (5.30%). In the present study population, the previous cutoff value of - 6.7 provided a sensitivity of 37.84% (previously 70%) and a specificity of 89.07% (previously 86%). Shifting the cutoff value to - 7.2 in both study populations resulted in a sensitivity of 72.50% and 72.97% and a specificity of 78.22% and 78.63% in data from the previous and present study respectively. Negative predictive values were 96.55% and 98.11%. Applying the model on the 101 patients of the present study with all necessary data for all veins resulted in 43 out of 101 patients (43%) not requiring a 30-min waiting period with adenosine testing. Two patients (2%) with ERC would have been missed when applying the model.</p><p><strong>Conclusions: </strong>The previously established ERC prediction model performs well, recommending its use for centers routinely using adenosine testing following PVI.</p>\",\"PeriodicalId\":16202,\"journal\":{\"name\":\"Journal of Interventional Cardiac Electrophysiology\",\"volume\":\" \",\"pages\":\"1623-1634\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522115/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Interventional Cardiac Electrophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10840-024-01811-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Interventional Cardiac Electrophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10840-024-01811-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Validation of a prediction model for early reconnection after cryoballoon ablation.
Background: We previously developed an early reconnection/dormant conduction (ERC) prediction model for cryoballoon ablation to avoid a 30-min waiting period with adenosine infusion. We now aimed to validate this model based on time to isolation, number of unsuccessful cryo-applications, and nadir balloon temperature.
Methods: Consecutive atrial fibrillation patients who underwent their first cryoballoon ablation in 2018-2019 at the Leiden University Medical Center were included. Model performance at the previous and at a new optimal cutoff value was determined.
Results: A total of 201 patients were included (85.57% paroxysmal AF, 139 male, median age 61 years (IQR 53-69)). ERC was found in 35 of 201 included patients (17.41%) and in 41 of 774 veins (5.30%). In the present study population, the previous cutoff value of - 6.7 provided a sensitivity of 37.84% (previously 70%) and a specificity of 89.07% (previously 86%). Shifting the cutoff value to - 7.2 in both study populations resulted in a sensitivity of 72.50% and 72.97% and a specificity of 78.22% and 78.63% in data from the previous and present study respectively. Negative predictive values were 96.55% and 98.11%. Applying the model on the 101 patients of the present study with all necessary data for all veins resulted in 43 out of 101 patients (43%) not requiring a 30-min waiting period with adenosine testing. Two patients (2%) with ERC would have been missed when applying the model.
Conclusions: The previously established ERC prediction model performs well, recommending its use for centers routinely using adenosine testing following PVI.
期刊介绍:
The Journal of Interventional Cardiac Electrophysiology is an international publication devoted to fostering research in and development of interventional techniques and therapies for the management of cardiac arrhythmias. It is designed primarily to present original research studies and scholarly scientific reviews of basic and applied science and clinical research in this field. The Journal will adopt a multidisciplinary approach to link physical, experimental, and clinical sciences as applied to the development of and practice in interventional electrophysiology. The Journal will examine techniques ranging from molecular, chemical and pharmacologic therapies to device and ablation technology. Accordingly, original research in clinical, epidemiologic and basic science arenas will be considered for publication. Applied engineering or physical science studies pertaining to interventional electrophysiology will be encouraged. The Journal is committed to providing comprehensive and detailed treatment of major interventional therapies and innovative techniques in a structured and clinically relevant manner. It is directed at clinical practitioners and investigators in the rapidly growing field of interventional electrophysiology. The editorial staff and board reflect this bias and include noted international experts in this area with a wealth of expertise in basic and clinical investigation. Peer review of all submissions, conflict of interest guidelines and periodic editorial board review of all Journal policies have been established.