{"title":"用于分离人血浆中泊马度胺对映体的经过验证的手性色谱法","authors":"Gyan Vardhan, Vikas Kumar, Puran Lal Sahu, Anuj Prakash, Ramasare Prasad, Shailendra Handu, Uttam Kumar Nath, Puneet Dhamija","doi":"10.1093/chromsci/bmae026","DOIUrl":null,"url":null,"abstract":"<p><p>In the present work, new chiral stationary phase high-performance liquid chromatography (CSP-HPLC) method was established and validated for the quantification of pomalidomide (PMD) enantiomers in human plasma. The chromatographic enantiomeric separation was achieved on a Daicel-CSP, Chiralpack IA 4.6 × 250 mm, 5 μm; because of its advantages of high degree of retention, high resolution capacity, better reproducibility, ability to produce lower back pressure and low degree of tailing. The mobile phase was maintained as methanol: glacial acetic acid (499.50 ml:50 μL). Ultraviolet wavelength for detection was 220 nm. PMD enantiomer-I and enantiomer-II were separated at 8.83 and 15.34 min, respectively. Limit of detection and limit of quantification for each enantiomer and the calibration curve of standard PMD was linear in range between 10-5,000 ng mL-1. The method was validated according to The International Council for Harmonisation of Technical Requirements of Pharmaceuticals for Human Use (ICH(Q2R1)) specific guidelines. We found no interference peak with PMD chromatogram obtained. This is a simple, reliable and specific method for detection and quantification of enantiomer of PMD in human plasma sample.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Validated Chiral Chromatography Method for Enantiomeric Separation of Pomalidomide in Human Plasma.\",\"authors\":\"Gyan Vardhan, Vikas Kumar, Puran Lal Sahu, Anuj Prakash, Ramasare Prasad, Shailendra Handu, Uttam Kumar Nath, Puneet Dhamija\",\"doi\":\"10.1093/chromsci/bmae026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present work, new chiral stationary phase high-performance liquid chromatography (CSP-HPLC) method was established and validated for the quantification of pomalidomide (PMD) enantiomers in human plasma. The chromatographic enantiomeric separation was achieved on a Daicel-CSP, Chiralpack IA 4.6 × 250 mm, 5 μm; because of its advantages of high degree of retention, high resolution capacity, better reproducibility, ability to produce lower back pressure and low degree of tailing. The mobile phase was maintained as methanol: glacial acetic acid (499.50 ml:50 μL). Ultraviolet wavelength for detection was 220 nm. PMD enantiomer-I and enantiomer-II were separated at 8.83 and 15.34 min, respectively. Limit of detection and limit of quantification for each enantiomer and the calibration curve of standard PMD was linear in range between 10-5,000 ng mL-1. The method was validated according to The International Council for Harmonisation of Technical Requirements of Pharmaceuticals for Human Use (ICH(Q2R1)) specific guidelines. We found no interference peak with PMD chromatogram obtained. This is a simple, reliable and specific method for detection and quantification of enantiomer of PMD in human plasma sample.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/chromsci/bmae026\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmae026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Validated Chiral Chromatography Method for Enantiomeric Separation of Pomalidomide in Human Plasma.
In the present work, new chiral stationary phase high-performance liquid chromatography (CSP-HPLC) method was established and validated for the quantification of pomalidomide (PMD) enantiomers in human plasma. The chromatographic enantiomeric separation was achieved on a Daicel-CSP, Chiralpack IA 4.6 × 250 mm, 5 μm; because of its advantages of high degree of retention, high resolution capacity, better reproducibility, ability to produce lower back pressure and low degree of tailing. The mobile phase was maintained as methanol: glacial acetic acid (499.50 ml:50 μL). Ultraviolet wavelength for detection was 220 nm. PMD enantiomer-I and enantiomer-II were separated at 8.83 and 15.34 min, respectively. Limit of detection and limit of quantification for each enantiomer and the calibration curve of standard PMD was linear in range between 10-5,000 ng mL-1. The method was validated according to The International Council for Harmonisation of Technical Requirements of Pharmaceuticals for Human Use (ICH(Q2R1)) specific guidelines. We found no interference peak with PMD chromatogram obtained. This is a simple, reliable and specific method for detection and quantification of enantiomer of PMD in human plasma sample.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.