电针通过中枢胆碱能通路介导的肠胶质细胞释放GDNF来改善帕金森病大鼠的胃肠道运动,从而保护肠神经元。

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"电针通过中枢胆碱能通路介导的肠胶质细胞释放GDNF来改善帕金森病大鼠的胃肠道运动,从而保护肠神经元。","authors":"","doi":"10.1016/j.neurot.2024.e00369","DOIUrl":null,"url":null,"abstract":"<div><p>Constipation symptoms of Parkinson's disease (PD) seriously reduce the quality of life of patients and aggravate the development of the disease, but current treatment options still cannot alleviate the progress of constipation. Electroacupuncture (EA) is a new method for the treatment of constipation, which can effectively treat the symptoms of constipation in PD patients. However, the specific regulatory mechanisms of EA in the treatment of constipation symptoms in PD remain unclear. The aim of this study is to investigate the therapeutic effect of EA on PD constipation rats and its regulatory mechanism. A rotenone (ROT)-induced gastrointestinal motility disorder model was used to simulate the pathological process of constipation in PD. The results showed that EA could effectively promote gastrointestinal peristalsis, reduce α-synuclein accumulation in substantia nigra and colon and colonic injury in rats after ROT administration. Mechanistically, EA activation of the central-cholinergic pathway increases acetylcholine release in the colon. At the same time, EA up-regulated the co-expression of enteric glial cells (EGCs) and α7 nicotinic acetylcholine receptor (α7nAChR). EA increased the expression of choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and tyrosine hydroxylase (TH) in the colon of PD rats. Further mechanistic studies showed that EA increased the expression of glial cell-derived neurotrophic factor (GDNF), GFRa1 and p-AKT in colon tissues. The present study confirmed that EA upregulates α7nAChR through a central-cholinergic mechanism to promote GDNF release from EGCs, thereby protecting intestinal neurons and thereby improving gastrointestinal motility.</p></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878747924000552/pdfft?md5=df876400aaeddf68c8c60dbff5e9ef1c&pid=1-s2.0-S1878747924000552-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electroacupuncture improves gastrointestinal motility through a central-cholinergic pathway-mediated GDNF releasing from intestinal glial cells to protect intestinal neurons in Parkinson's disease rats\",\"authors\":\"\",\"doi\":\"10.1016/j.neurot.2024.e00369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Constipation symptoms of Parkinson's disease (PD) seriously reduce the quality of life of patients and aggravate the development of the disease, but current treatment options still cannot alleviate the progress of constipation. Electroacupuncture (EA) is a new method for the treatment of constipation, which can effectively treat the symptoms of constipation in PD patients. However, the specific regulatory mechanisms of EA in the treatment of constipation symptoms in PD remain unclear. The aim of this study is to investigate the therapeutic effect of EA on PD constipation rats and its regulatory mechanism. A rotenone (ROT)-induced gastrointestinal motility disorder model was used to simulate the pathological process of constipation in PD. The results showed that EA could effectively promote gastrointestinal peristalsis, reduce α-synuclein accumulation in substantia nigra and colon and colonic injury in rats after ROT administration. Mechanistically, EA activation of the central-cholinergic pathway increases acetylcholine release in the colon. At the same time, EA up-regulated the co-expression of enteric glial cells (EGCs) and α7 nicotinic acetylcholine receptor (α7nAChR). EA increased the expression of choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and tyrosine hydroxylase (TH) in the colon of PD rats. Further mechanistic studies showed that EA increased the expression of glial cell-derived neurotrophic factor (GDNF), GFRa1 and p-AKT in colon tissues. The present study confirmed that EA upregulates α7nAChR through a central-cholinergic mechanism to promote GDNF release from EGCs, thereby protecting intestinal neurons and thereby improving gastrointestinal motility.</p></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1878747924000552/pdfft?md5=df876400aaeddf68c8c60dbff5e9ef1c&pid=1-s2.0-S1878747924000552-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878747924000552\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878747924000552","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)的便秘症状严重降低了患者的生活质量,并加重了病情的发展,但目前的治疗方案仍无法缓解便秘的进展。电针(EA)是一种治疗便秘的新方法,可有效治疗帕金森病患者的便秘症状。然而,电针治疗帕金森病便秘症状的具体调节机制仍不清楚。本研究旨在探讨EA对PD便秘大鼠的治疗作用及其调控机制。研究采用鱼藤酮(ROT)诱导的胃肠道运动障碍模型模拟 PD 便秘的病理过程。结果表明,EA能有效促进胃肠蠕动,减少ROT给药后大鼠黑质和结肠中α-突触核蛋白的蓄积,减轻结肠损伤。从机理上讲,EA 可激活中枢胆碱能通路,增加结肠中乙酰胆碱的释放。同时,EA 上调肠胶质细胞(EGCs)和α7 尼古丁乙酰胆碱受体(α7nAChR)的共表达。EA增加了PD大鼠结肠中胆碱乙酰转移酶(ChAT)、神经元一氧化氮合酶(nNOS)和酪氨酸羟化酶(TH)的表达。进一步的机理研究表明,EA 增加了结肠组织中胶质细胞源性神经营养因子(GDNF)、GFRa1 和 p-AKT 的表达。本研究证实,EA通过中枢胆碱能机制上调α7nAChR,促进EGCs释放GDNF,从而保护肠道神经元,进而改善胃肠道蠕动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electroacupuncture improves gastrointestinal motility through a central-cholinergic pathway-mediated GDNF releasing from intestinal glial cells to protect intestinal neurons in Parkinson's disease rats

Electroacupuncture improves gastrointestinal motility through a central-cholinergic pathway-mediated GDNF releasing from intestinal glial cells to protect intestinal neurons in Parkinson's disease rats

Constipation symptoms of Parkinson's disease (PD) seriously reduce the quality of life of patients and aggravate the development of the disease, but current treatment options still cannot alleviate the progress of constipation. Electroacupuncture (EA) is a new method for the treatment of constipation, which can effectively treat the symptoms of constipation in PD patients. However, the specific regulatory mechanisms of EA in the treatment of constipation symptoms in PD remain unclear. The aim of this study is to investigate the therapeutic effect of EA on PD constipation rats and its regulatory mechanism. A rotenone (ROT)-induced gastrointestinal motility disorder model was used to simulate the pathological process of constipation in PD. The results showed that EA could effectively promote gastrointestinal peristalsis, reduce α-synuclein accumulation in substantia nigra and colon and colonic injury in rats after ROT administration. Mechanistically, EA activation of the central-cholinergic pathway increases acetylcholine release in the colon. At the same time, EA up-regulated the co-expression of enteric glial cells (EGCs) and α7 nicotinic acetylcholine receptor (α7nAChR). EA increased the expression of choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and tyrosine hydroxylase (TH) in the colon of PD rats. Further mechanistic studies showed that EA increased the expression of glial cell-derived neurotrophic factor (GDNF), GFRa1 and p-AKT in colon tissues. The present study confirmed that EA upregulates α7nAChR through a central-cholinergic mechanism to promote GDNF release from EGCs, thereby protecting intestinal neurons and thereby improving gastrointestinal motility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信