Xiaoyu Liu, Yan Li, Weijian Zhang, Nan Gao, Jie Chen, Cheng Xiao, Guoqiang Zhang
{"title":"抑制 cIAP1/2 可减少肺内皮细胞中 RIPK1 的磷酸化,减轻败血症诱发的肺损伤和炎症反应。","authors":"Xiaoyu Liu, Yan Li, Weijian Zhang, Nan Gao, Jie Chen, Cheng Xiao, Guoqiang Zhang","doi":"10.1007/s12026-024-09491-8","DOIUrl":null,"url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a severe complication of sepsis characterized by acute respiratory distress, hypoxemia, and diffuse bilateral pulmonary infiltrates. The regulation of RIPK1 is an important part of the inflammatory response, and cIAP1/2 serves as the E3 ubiquitin ligase for RIPK1. In this study, we investigated the effect and mechanism of cIAP1/2 inhibition on sepsis-induced lung injury. Our results showed that cIAP1/2 inhibition can alleviate sepsis-induced lung injury and reduce the inflammatory response, which is accompanied by downregulation of RIPK1 phosphorylation and ubiquitination. Additionally, cIAP1/2 inhibition led to the up-regulation of programmed cell death, including apoptosis, necroptosis, and pyroptosis, and inhibiting these three cell death pathways can further reduce the inflammatory response, which is similar to the recently discovered programmed cell death pathway PANoptosis. Our findings suggest that cIAP1/2 and PANoptosis inhibition may be a new strategy for treating sepsis-induced lung injury and provide important references for further exploring the mechanism of sepsis-induced lung injury and identifying new therapeutic targets.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of cIAP1/2 reduces RIPK1 phosphorylation in pulmonary endothelial cells and alleviate sepsis-induced lung injury and inflammatory response.\",\"authors\":\"Xiaoyu Liu, Yan Li, Weijian Zhang, Nan Gao, Jie Chen, Cheng Xiao, Guoqiang Zhang\",\"doi\":\"10.1007/s12026-024-09491-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a severe complication of sepsis characterized by acute respiratory distress, hypoxemia, and diffuse bilateral pulmonary infiltrates. The regulation of RIPK1 is an important part of the inflammatory response, and cIAP1/2 serves as the E3 ubiquitin ligase for RIPK1. In this study, we investigated the effect and mechanism of cIAP1/2 inhibition on sepsis-induced lung injury. Our results showed that cIAP1/2 inhibition can alleviate sepsis-induced lung injury and reduce the inflammatory response, which is accompanied by downregulation of RIPK1 phosphorylation and ubiquitination. Additionally, cIAP1/2 inhibition led to the up-regulation of programmed cell death, including apoptosis, necroptosis, and pyroptosis, and inhibiting these three cell death pathways can further reduce the inflammatory response, which is similar to the recently discovered programmed cell death pathway PANoptosis. Our findings suggest that cIAP1/2 and PANoptosis inhibition may be a new strategy for treating sepsis-induced lung injury and provide important references for further exploring the mechanism of sepsis-induced lung injury and identifying new therapeutic targets.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12026-024-09491-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-024-09491-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Inhibition of cIAP1/2 reduces RIPK1 phosphorylation in pulmonary endothelial cells and alleviate sepsis-induced lung injury and inflammatory response.
Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a severe complication of sepsis characterized by acute respiratory distress, hypoxemia, and diffuse bilateral pulmonary infiltrates. The regulation of RIPK1 is an important part of the inflammatory response, and cIAP1/2 serves as the E3 ubiquitin ligase for RIPK1. In this study, we investigated the effect and mechanism of cIAP1/2 inhibition on sepsis-induced lung injury. Our results showed that cIAP1/2 inhibition can alleviate sepsis-induced lung injury and reduce the inflammatory response, which is accompanied by downregulation of RIPK1 phosphorylation and ubiquitination. Additionally, cIAP1/2 inhibition led to the up-regulation of programmed cell death, including apoptosis, necroptosis, and pyroptosis, and inhibiting these three cell death pathways can further reduce the inflammatory response, which is similar to the recently discovered programmed cell death pathway PANoptosis. Our findings suggest that cIAP1/2 and PANoptosis inhibition may be a new strategy for treating sepsis-induced lung injury and provide important references for further exploring the mechanism of sepsis-induced lung injury and identifying new therapeutic targets.