{"title":"活体人体细胞中带有突变组蛋白 H4 的核小体的行为。","authors":"Adilgazy Semeigazin, Shiori Iida, Katsuhiko Minami, Sachiko Tamura, Satoru Ide, Koichi Higashi, Atsushi Toyoda, Ken Kurokawa, Kazuhiro Maeshima","doi":"10.1007/s00418-024-02293-x","DOIUrl":null,"url":null,"abstract":"<p><p>Since Robert Feulgen first stained DNA in the cell, visualizing genome chromatin has been a central issue in cell biology to uncover how chromatin is organized and behaves in the cell. To approach this issue, we have developed single-molecule imaging of nucleosomes, a basic unit of chromatin, to unveil local nucleosome behavior in living cells. In this study, we investigated behaviors of nucleosomes with various histone H4 mutants in living HeLa cells to address the role of H4 tail acetylation, including H4K16Ac and others, which are generally associated with more transcriptionally active chromatin regions. We ectopically expressed wild-type (wt) or mutated H4s (H4K16 point; H4K5,8,12,16 quadruple; and H4 tail deletion) fused with HaloTag in HeLa cells. Cells that expressed wtH4-Halo, H4K16-Halo mutants, and multiple H4-Halo mutants had euchromatin-concentrated distribution. Consistently, the genomic regions of the wtH4-Halo nucleosomes corresponded to Hi-C contact domains (or topologically associating domains, TADs) with active chromatin marks (A-compartment). Utilizing single-nucleosome imaging, we found that none of the H4 deacetylation or acetylation mimicked H4 mutants altered the overall local nucleosome motion. This finding suggests that H4 mutant nucleosomes embedded in the condensed euchromatic domains with excess endogenous H4 nucleosomes cannot cause an observable change in the local motion. Interestingly, H4 with four lysine-to-arginine mutations displayed a substantial freely diffusing fraction in the nucleoplasm, whereas H4 with a truncated N-terminal tail was incorporated in heterochromatic regions as well as euchromatin. Our study indicates the power of single-nucleosome imaging to understand individual histone/nucleosome behavior reflecting chromatin environments in living cells.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"23-40"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behaviors of nucleosomes with mutant histone H4s in euchromatic domains of living human cells.\",\"authors\":\"Adilgazy Semeigazin, Shiori Iida, Katsuhiko Minami, Sachiko Tamura, Satoru Ide, Koichi Higashi, Atsushi Toyoda, Ken Kurokawa, Kazuhiro Maeshima\",\"doi\":\"10.1007/s00418-024-02293-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since Robert Feulgen first stained DNA in the cell, visualizing genome chromatin has been a central issue in cell biology to uncover how chromatin is organized and behaves in the cell. To approach this issue, we have developed single-molecule imaging of nucleosomes, a basic unit of chromatin, to unveil local nucleosome behavior in living cells. In this study, we investigated behaviors of nucleosomes with various histone H4 mutants in living HeLa cells to address the role of H4 tail acetylation, including H4K16Ac and others, which are generally associated with more transcriptionally active chromatin regions. We ectopically expressed wild-type (wt) or mutated H4s (H4K16 point; H4K5,8,12,16 quadruple; and H4 tail deletion) fused with HaloTag in HeLa cells. Cells that expressed wtH4-Halo, H4K16-Halo mutants, and multiple H4-Halo mutants had euchromatin-concentrated distribution. Consistently, the genomic regions of the wtH4-Halo nucleosomes corresponded to Hi-C contact domains (or topologically associating domains, TADs) with active chromatin marks (A-compartment). Utilizing single-nucleosome imaging, we found that none of the H4 deacetylation or acetylation mimicked H4 mutants altered the overall local nucleosome motion. This finding suggests that H4 mutant nucleosomes embedded in the condensed euchromatic domains with excess endogenous H4 nucleosomes cannot cause an observable change in the local motion. Interestingly, H4 with four lysine-to-arginine mutations displayed a substantial freely diffusing fraction in the nucleoplasm, whereas H4 with a truncated N-terminal tail was incorporated in heterochromatic regions as well as euchromatin. Our study indicates the power of single-nucleosome imaging to understand individual histone/nucleosome behavior reflecting chromatin environments in living cells.</p>\",\"PeriodicalId\":13107,\"journal\":{\"name\":\"Histochemistry and Cell Biology\",\"volume\":\" \",\"pages\":\"23-40\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Histochemistry and Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00418-024-02293-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-024-02293-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
自罗伯特-费尔根(Robert Feulgen)首次对细胞中的 DNA 进行染色以来,基因组染色质的可视化一直是细胞生物学的核心问题,以揭示染色质在细胞中的组织和行为。为了解决这个问题,我们对染色质的基本单位核小体进行了单分子成像,以揭示活细胞中局部核小体的行为。在这项研究中,我们研究了活体HeLa细胞中不同组蛋白H4突变体的核小体行为,以探讨H4尾部乙酰化的作用,包括H4K16Ac和其他通常与转录更活跃的染色质区域相关的乙酰化。我们在 HeLa 细胞中异位表达了与 HaloTag 融合的野生型(wt)或突变型 H4s(H4K16 点;H4K5,8,12,16 四倍;H4 尾部缺失)。表达了 wtH4-Halo、H4K16-Halo 突变体和多个 H4-Halo 突变体的细胞呈超染色质集中分布。一致的是,wtH4-Halo核小体的基因组区域对应于具有活性染色质标记(A区)的Hi-C接触域(或拓扑关联域,TAD)。通过单核糖体成像,我们发现H4去乙酰化或乙酰化模拟H4突变体都不会改变局部核糖体的整体运动。这一发现表明,H4突变体核小体嵌入具有过量内源性H4核小体的凝集外显子结构域中,不会导致局部运动发生可观察到的变化。有趣的是,具有四个赖氨酸-精氨酸突变的H4在核质中显示出相当大的自由扩散部分,而具有截短的N-末端尾巴的H4则结合在异染色质区域以及核染色质中。我们的研究表明,单核糖体成像技术可以了解反映活细胞染色质环境的单个组蛋白/核糖体行为。
Behaviors of nucleosomes with mutant histone H4s in euchromatic domains of living human cells.
Since Robert Feulgen first stained DNA in the cell, visualizing genome chromatin has been a central issue in cell biology to uncover how chromatin is organized and behaves in the cell. To approach this issue, we have developed single-molecule imaging of nucleosomes, a basic unit of chromatin, to unveil local nucleosome behavior in living cells. In this study, we investigated behaviors of nucleosomes with various histone H4 mutants in living HeLa cells to address the role of H4 tail acetylation, including H4K16Ac and others, which are generally associated with more transcriptionally active chromatin regions. We ectopically expressed wild-type (wt) or mutated H4s (H4K16 point; H4K5,8,12,16 quadruple; and H4 tail deletion) fused with HaloTag in HeLa cells. Cells that expressed wtH4-Halo, H4K16-Halo mutants, and multiple H4-Halo mutants had euchromatin-concentrated distribution. Consistently, the genomic regions of the wtH4-Halo nucleosomes corresponded to Hi-C contact domains (or topologically associating domains, TADs) with active chromatin marks (A-compartment). Utilizing single-nucleosome imaging, we found that none of the H4 deacetylation or acetylation mimicked H4 mutants altered the overall local nucleosome motion. This finding suggests that H4 mutant nucleosomes embedded in the condensed euchromatic domains with excess endogenous H4 nucleosomes cannot cause an observable change in the local motion. Interestingly, H4 with four lysine-to-arginine mutations displayed a substantial freely diffusing fraction in the nucleoplasm, whereas H4 with a truncated N-terminal tail was incorporated in heterochromatic regions as well as euchromatin. Our study indicates the power of single-nucleosome imaging to understand individual histone/nucleosome behavior reflecting chromatin environments in living cells.
期刊介绍:
Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.