{"title":"利用函数协变量测试条件量子独立性","authors":"Yongzhen Feng, Jie Li, Xiaojun Song","doi":"10.1093/biomtc/ujae036","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new non-parametric conditional independence test for a scalar response and a functional covariate over a continuum of quantile levels. We build a Cramer-von Mises type test statistic based on an empirical process indexed by random projections of the functional covariate, effectively avoiding the \"curse of dimensionality\" under the projected hypothesis, which is almost surely equivalent to the null hypothesis. The asymptotic null distribution of the proposed test statistic is obtained under some mild assumptions. The asymptotic global and local power properties of our test statistic are then investigated. We specifically demonstrate that the statistic is able to detect a broad class of local alternatives converging to the null at the parametric rate. Additionally, we recommend a simple multiplier bootstrap approach for estimating the critical values. The finite-sample performance of our statistic is examined through several Monte Carlo simulation experiments. Finally, an analysis of an EEG data set is used to show the utility and versatility of our proposed test statistic.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing conditional quantile independence with functional covariate.\",\"authors\":\"Yongzhen Feng, Jie Li, Xiaojun Song\",\"doi\":\"10.1093/biomtc/ujae036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a new non-parametric conditional independence test for a scalar response and a functional covariate over a continuum of quantile levels. We build a Cramer-von Mises type test statistic based on an empirical process indexed by random projections of the functional covariate, effectively avoiding the \\\"curse of dimensionality\\\" under the projected hypothesis, which is almost surely equivalent to the null hypothesis. The asymptotic null distribution of the proposed test statistic is obtained under some mild assumptions. The asymptotic global and local power properties of our test statistic are then investigated. We specifically demonstrate that the statistic is able to detect a broad class of local alternatives converging to the null at the parametric rate. Additionally, we recommend a simple multiplier bootstrap approach for estimating the critical values. The finite-sample performance of our statistic is examined through several Monte Carlo simulation experiments. Finally, an analysis of an EEG data set is used to show the utility and versatility of our proposed test statistic.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae036\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Testing conditional quantile independence with functional covariate.
We propose a new non-parametric conditional independence test for a scalar response and a functional covariate over a continuum of quantile levels. We build a Cramer-von Mises type test statistic based on an empirical process indexed by random projections of the functional covariate, effectively avoiding the "curse of dimensionality" under the projected hypothesis, which is almost surely equivalent to the null hypothesis. The asymptotic null distribution of the proposed test statistic is obtained under some mild assumptions. The asymptotic global and local power properties of our test statistic are then investigated. We specifically demonstrate that the statistic is able to detect a broad class of local alternatives converging to the null at the parametric rate. Additionally, we recommend a simple multiplier bootstrap approach for estimating the critical values. The finite-sample performance of our statistic is examined through several Monte Carlo simulation experiments. Finally, an analysis of an EEG data set is used to show the utility and versatility of our proposed test statistic.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.