RUFY4 基因缺失会阻碍破骨细胞的内溶酶体运输,从而防止病理性骨质流失。

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING
Minhee Kim, Jin Hee Park, Miyeon Go, Nawon Lee, Jeongin Seo, Hana Lee, Doyong Kim, Hyunil Ha, Taesoo Kim, Myeong Seon Jeong, Suree Kim, Taesoo Kim, Han Sung Kim, Dongmin Kang, Hyunbo Shim, Soo Young Lee
{"title":"RUFY4 基因缺失会阻碍破骨细胞的内溶酶体运输,从而防止病理性骨质流失。","authors":"Minhee Kim, Jin Hee Park, Miyeon Go, Nawon Lee, Jeongin Seo, Hana Lee, Doyong Kim, Hyunil Ha, Taesoo Kim, Myeong Seon Jeong, Suree Kim, Taesoo Kim, Han Sung Kim, Dongmin Kang, Hyunbo Shim, Soo Young Lee","doi":"10.1038/s41413-024-00326-8","DOIUrl":null,"url":null,"abstract":"<p><p>Mature osteoclasts degrade bone matrix by exocytosis of active proteases from secretory lysosomes through a ruffled border. However, the molecular mechanisms underlying lysosomal trafficking and secretion in osteoclasts remain largely unknown. Here, we show with GeneChip analysis that RUN and FYVE domain-containing protein 4 (RUFY4) is strongly upregulated during osteoclastogenesis. Mice lacking Rufy4 exhibited a high trabecular bone mass phenotype with abnormalities in osteoclast function in vivo. Furthermore, deleting Rufy4 did not affect osteoclast differentiation, but inhibited bone-resorbing activity due to disruption in the acidic maturation of secondary lysosomes, their trafficking to the membrane, and their secretion of cathepsin K into the extracellular space. Mechanistically, RUFY4 promotes late endosome-lysosome fusion by acting as an adaptor protein between Rab7 on late endosomes and LAMP2 on primary lysosomes. Consequently, Rufy4-deficient mice were highly protected from lipopolysaccharide- and ovariectomy-induced bone loss. Thus, RUFY4 plays as a new regulator in osteoclast activity by mediating endo-lysosomal trafficking and have a potential to be specific target for therapies against bone-loss diseases such as osteoporosis.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094054/pdf/","citationCount":"0","resultStr":"{\"title\":\"RUFY4 deletion prevents pathological bone loss by blocking endo-lysosomal trafficking of osteoclasts.\",\"authors\":\"Minhee Kim, Jin Hee Park, Miyeon Go, Nawon Lee, Jeongin Seo, Hana Lee, Doyong Kim, Hyunil Ha, Taesoo Kim, Myeong Seon Jeong, Suree Kim, Taesoo Kim, Han Sung Kim, Dongmin Kang, Hyunbo Shim, Soo Young Lee\",\"doi\":\"10.1038/s41413-024-00326-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mature osteoclasts degrade bone matrix by exocytosis of active proteases from secretory lysosomes through a ruffled border. However, the molecular mechanisms underlying lysosomal trafficking and secretion in osteoclasts remain largely unknown. Here, we show with GeneChip analysis that RUN and FYVE domain-containing protein 4 (RUFY4) is strongly upregulated during osteoclastogenesis. Mice lacking Rufy4 exhibited a high trabecular bone mass phenotype with abnormalities in osteoclast function in vivo. Furthermore, deleting Rufy4 did not affect osteoclast differentiation, but inhibited bone-resorbing activity due to disruption in the acidic maturation of secondary lysosomes, their trafficking to the membrane, and their secretion of cathepsin K into the extracellular space. Mechanistically, RUFY4 promotes late endosome-lysosome fusion by acting as an adaptor protein between Rab7 on late endosomes and LAMP2 on primary lysosomes. Consequently, Rufy4-deficient mice were highly protected from lipopolysaccharide- and ovariectomy-induced bone loss. Thus, RUFY4 plays as a new regulator in osteoclast activity by mediating endo-lysosomal trafficking and have a potential to be specific target for therapies against bone-loss diseases such as osteoporosis.</p>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094054/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-024-00326-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00326-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

成熟的破骨细胞通过褶皱边界从分泌溶酶体中排出活性蛋白酶,从而降解骨基质。然而,破骨细胞溶酶体转运和分泌的分子机制在很大程度上仍不为人知。在这里,我们通过基因芯片分析表明,在破骨细胞生成过程中,含 RUN 和 FYVE 结构域的蛋白 4(RUFY4)被强烈上调。缺乏 Rufy4 的小鼠表现出高小梁骨量表型,体内破骨细胞功能异常。此外,删除 Rufy4 不会影响破骨细胞的分化,但会抑制破骨细胞的骨吸收活性,这是由于次级溶酶体的酸性成熟、向膜的转运以及向细胞外空间分泌 cathepsin K 的过程受到了破坏。从机理上讲,RUFY4 作为晚期内体上的 Rab7 与初级溶酶体上的 LAMP2 之间的适配蛋白,可促进晚期内体与溶酶体的融合。因此,Rufy4缺陷小鼠对脂多糖和卵巢切除术诱导的骨质流失具有高度保护作用。因此,RUFY4通过介导内溶酶体转运而成为破骨细胞活性的新调节因子,并有可能成为骨质疏松症等骨丢失疾病的特异性治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

RUFY4 deletion prevents pathological bone loss by blocking endo-lysosomal trafficking of osteoclasts.

RUFY4 deletion prevents pathological bone loss by blocking endo-lysosomal trafficking of osteoclasts.

Mature osteoclasts degrade bone matrix by exocytosis of active proteases from secretory lysosomes through a ruffled border. However, the molecular mechanisms underlying lysosomal trafficking and secretion in osteoclasts remain largely unknown. Here, we show with GeneChip analysis that RUN and FYVE domain-containing protein 4 (RUFY4) is strongly upregulated during osteoclastogenesis. Mice lacking Rufy4 exhibited a high trabecular bone mass phenotype with abnormalities in osteoclast function in vivo. Furthermore, deleting Rufy4 did not affect osteoclast differentiation, but inhibited bone-resorbing activity due to disruption in the acidic maturation of secondary lysosomes, their trafficking to the membrane, and their secretion of cathepsin K into the extracellular space. Mechanistically, RUFY4 promotes late endosome-lysosome fusion by acting as an adaptor protein between Rab7 on late endosomes and LAMP2 on primary lysosomes. Consequently, Rufy4-deficient mice were highly protected from lipopolysaccharide- and ovariectomy-induced bone loss. Thus, RUFY4 plays as a new regulator in osteoclast activity by mediating endo-lysosomal trafficking and have a potential to be specific target for therapies against bone-loss diseases such as osteoporosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信