全无机卤化物包荧光体提升了 Bi0.4Sb1.6Te3 的高功率范围,可用于热电冷却和低品位热回收。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-05-14 DOI:10.1021/acsnano.4c03926
Kangpeng Jin, Zhiya Yang, Liangwei Fu, Yue Lou, Pengfei Xu, Ming Huang, Zhan Shi and Biao Xu*, 
{"title":"全无机卤化物包荧光体提升了 Bi0.4Sb1.6Te3 的高功率范围,可用于热电冷却和低品位热回收。","authors":"Kangpeng Jin,&nbsp;Zhiya Yang,&nbsp;Liangwei Fu,&nbsp;Yue Lou,&nbsp;Pengfei Xu,&nbsp;Ming Huang,&nbsp;Zhan Shi and Biao Xu*,&nbsp;","doi":"10.1021/acsnano.4c03926","DOIUrl":null,"url":null,"abstract":"<p >The all-inorganic halide perovskite CsPbX<sub>3</sub> (X = Cl, Br, or I) offers various advantages, such as tunable electronic structure and high carrier mobility. However, its potential application in thermoelectric materials remains underexplored. In this study, we propose a simple yet effective method to synthesize a CsPbX<sub>3</sub>/Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> (BST) nanocomposite by sintering a uniformly mixed raw powder. The intrinsic excitation of the BST system is suppressed by exploiting the rich phase structure and tunable electrical transport properties of CsPbX<sub>3</sub>, and the thermoelectric properties were synergistically optimized. Notably, for CsPbI<sub>3</sub>, its phase-transition-induced dislocation arrays together with low group velocities drastically reduce thermal conductivity. As a result, the composite achieves an ultrahigh average figure-of-merit (<i>ZT</i>) of 1.4 from 298 to 523 K. The two-pair TE module demonstrates a superior conversion efficiency of 7.3%. This study expands the potential applications of inorganic halide perovskites, into thermoelectrics.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 21","pages":"13924–13938"},"PeriodicalIF":16.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-Inorganic Halide Perovskites Boost High-Ranged Figure-of-Merit in Bi0.4Sb1.6Te3 for Thermoelectric Cooling and Low-Grade Heat Recovery\",\"authors\":\"Kangpeng Jin,&nbsp;Zhiya Yang,&nbsp;Liangwei Fu,&nbsp;Yue Lou,&nbsp;Pengfei Xu,&nbsp;Ming Huang,&nbsp;Zhan Shi and Biao Xu*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c03926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The all-inorganic halide perovskite CsPbX<sub>3</sub> (X = Cl, Br, or I) offers various advantages, such as tunable electronic structure and high carrier mobility. However, its potential application in thermoelectric materials remains underexplored. In this study, we propose a simple yet effective method to synthesize a CsPbX<sub>3</sub>/Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> (BST) nanocomposite by sintering a uniformly mixed raw powder. The intrinsic excitation of the BST system is suppressed by exploiting the rich phase structure and tunable electrical transport properties of CsPbX<sub>3</sub>, and the thermoelectric properties were synergistically optimized. Notably, for CsPbI<sub>3</sub>, its phase-transition-induced dislocation arrays together with low group velocities drastically reduce thermal conductivity. As a result, the composite achieves an ultrahigh average figure-of-merit (<i>ZT</i>) of 1.4 from 298 to 523 K. The two-pair TE module demonstrates a superior conversion efficiency of 7.3%. This study expands the potential applications of inorganic halide perovskites, into thermoelectrics.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 21\",\"pages\":\"13924–13938\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c03926\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c03926","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全无机卤化物包晶 CsPbX3(X = Cl、Br 或 I)具有多种优势,例如可调电子结构和高载流子迁移率。然而,它在热电材料中的潜在应用仍未得到充分开发。在本研究中,我们提出了一种简单而有效的方法,通过烧结均匀混合的原材料粉末来合成 CsPbX3/Bi0.4Sb1.6Te3 (BST) 纳米复合材料。通过利用 CsPbX3 丰富的相结构和可调的电传输特性抑制了 BST 系统的本征激发,并协同优化了热电特性。值得注意的是,对于 CsPbI3 而言,其相变引起的位错阵列和低群速度大大降低了热导率。因此,该复合材料在 298 至 523 K 的温度范围内实现了 1.4 的超高平均功率系数(ZT)。这项研究拓展了无机卤化物包晶在热电领域的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

All-Inorganic Halide Perovskites Boost High-Ranged Figure-of-Merit in Bi0.4Sb1.6Te3 for Thermoelectric Cooling and Low-Grade Heat Recovery

All-Inorganic Halide Perovskites Boost High-Ranged Figure-of-Merit in Bi0.4Sb1.6Te3 for Thermoelectric Cooling and Low-Grade Heat Recovery

All-Inorganic Halide Perovskites Boost High-Ranged Figure-of-Merit in Bi0.4Sb1.6Te3 for Thermoelectric Cooling and Low-Grade Heat Recovery

The all-inorganic halide perovskite CsPbX3 (X = Cl, Br, or I) offers various advantages, such as tunable electronic structure and high carrier mobility. However, its potential application in thermoelectric materials remains underexplored. In this study, we propose a simple yet effective method to synthesize a CsPbX3/Bi0.4Sb1.6Te3 (BST) nanocomposite by sintering a uniformly mixed raw powder. The intrinsic excitation of the BST system is suppressed by exploiting the rich phase structure and tunable electrical transport properties of CsPbX3, and the thermoelectric properties were synergistically optimized. Notably, for CsPbI3, its phase-transition-induced dislocation arrays together with low group velocities drastically reduce thermal conductivity. As a result, the composite achieves an ultrahigh average figure-of-merit (ZT) of 1.4 from 298 to 523 K. The two-pair TE module demonstrates a superior conversion efficiency of 7.3%. This study expands the potential applications of inorganic halide perovskites, into thermoelectrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信