探索掺锂石墨烯的超导极限

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qiuping Yang, Huimin Zhang, Jijun Zhao, Xue Jiang
{"title":"探索掺锂石墨烯的超导极限","authors":"Qiuping Yang,&nbsp;Huimin Zhang,&nbsp;Jijun Zhao,&nbsp;Xue Jiang","doi":"10.1002/adfm.202406023","DOIUrl":null,"url":null,"abstract":"<p>The introduction of superconductivity in graphene systems is highly desirable from both fundamental physics and application perspectives. In this article, a superlattice strategy to develop a series of Li-doped graphene is reported: deposition type-I (Li<sub>2</sub>C<sub>6</sub>, Li<sub>2</sub>C<sub>8</sub>, LiC<sub>6</sub>, Li<sub>3</sub>C<sub>24</sub>, LiC<sub>12</sub>, LiC<sub>16</sub>, Li<sub>2</sub>C<sub>36</sub>, LiC<sub>24</sub>), intercalation type-II (LiC<sub>4</sub>, Li<sub>2</sub>C<sub>12</sub>, LiC<sub>8</sub>, LiC<sub>12</sub>, LiC<sub>16</sub>), and coexisting deposition and intercalation type-III (Li<sub>3</sub>C<sub>12</sub>). With increasing concentration of Li atoms, both metallicity, and electron–phonon coupling (EPC) has dramatically increased, which is favorable for the emergence of superconductivity in the screened Li–C compounds. Notably, graphene superlattice structures with intercalated Li2 atoms have higher stability, while Li1-deposited graphene at the same concentration produces higher <i>T</i><sub>c</sub>. Among them, type-I-Li<sub>2</sub>C<sub>6</sub>, type-I-Li<sub>2</sub>C<sub>8</sub>, type-II-LiC<sub>4</sub>, and type-III-Li<sub>3</sub>C<sub>12</sub> are phonon-mediated superconductors with high transition temperatures (<i>T</i><sub>c</sub>) of 18, 12, 3.4, and 14 K, respectively. The EPC of type-I-Li<sub>2</sub>C<sub>6</sub>, type-I-Li<sub>2</sub>C<sub>8</sub>, and type-III-Li<sub>3</sub>C<sub>12</sub> mainly arises from the coupling of the C-2<i>p</i><sub>z</sub> electron states with the low-frequency (0–800 cm<sup>−1</sup>) deposition-Li<sub>xy</sub>/Li<sub>z</sub>, and out-of-plane-C<sub>z</sub> vibrations. In contrast, the high-frequency (800–1600 cm<sup>−1</sup>) vibration modes of in-plane-C<sub>xy</sub> atoms are mainly responsible for the <i>T</i><sub>c</sub> of type-II-LiC<sub>4</sub>. The findings provide comprehensive insights into the superconductivity limit of Li-doped graphene.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 44","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the Superconductivity Limit of Li-Doped Graphene\",\"authors\":\"Qiuping Yang,&nbsp;Huimin Zhang,&nbsp;Jijun Zhao,&nbsp;Xue Jiang\",\"doi\":\"10.1002/adfm.202406023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The introduction of superconductivity in graphene systems is highly desirable from both fundamental physics and application perspectives. In this article, a superlattice strategy to develop a series of Li-doped graphene is reported: deposition type-I (Li<sub>2</sub>C<sub>6</sub>, Li<sub>2</sub>C<sub>8</sub>, LiC<sub>6</sub>, Li<sub>3</sub>C<sub>24</sub>, LiC<sub>12</sub>, LiC<sub>16</sub>, Li<sub>2</sub>C<sub>36</sub>, LiC<sub>24</sub>), intercalation type-II (LiC<sub>4</sub>, Li<sub>2</sub>C<sub>12</sub>, LiC<sub>8</sub>, LiC<sub>12</sub>, LiC<sub>16</sub>), and coexisting deposition and intercalation type-III (Li<sub>3</sub>C<sub>12</sub>). With increasing concentration of Li atoms, both metallicity, and electron–phonon coupling (EPC) has dramatically increased, which is favorable for the emergence of superconductivity in the screened Li–C compounds. Notably, graphene superlattice structures with intercalated Li2 atoms have higher stability, while Li1-deposited graphene at the same concentration produces higher <i>T</i><sub>c</sub>. Among them, type-I-Li<sub>2</sub>C<sub>6</sub>, type-I-Li<sub>2</sub>C<sub>8</sub>, type-II-LiC<sub>4</sub>, and type-III-Li<sub>3</sub>C<sub>12</sub> are phonon-mediated superconductors with high transition temperatures (<i>T</i><sub>c</sub>) of 18, 12, 3.4, and 14 K, respectively. The EPC of type-I-Li<sub>2</sub>C<sub>6</sub>, type-I-Li<sub>2</sub>C<sub>8</sub>, and type-III-Li<sub>3</sub>C<sub>12</sub> mainly arises from the coupling of the C-2<i>p</i><sub>z</sub> electron states with the low-frequency (0–800 cm<sup>−1</sup>) deposition-Li<sub>xy</sub>/Li<sub>z</sub>, and out-of-plane-C<sub>z</sub> vibrations. In contrast, the high-frequency (800–1600 cm<sup>−1</sup>) vibration modes of in-plane-C<sub>xy</sub> atoms are mainly responsible for the <i>T</i><sub>c</sub> of type-II-LiC<sub>4</sub>. The findings provide comprehensive insights into the superconductivity limit of Li-doped graphene.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"34 44\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202406023\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202406023","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从基础物理学和应用的角度来看,在石墨烯系统中引入超导性都是非常理想的。本文报告了开发一系列掺锂石墨烯的超晶格策略:沉积型-I(Li2C6、Li2C8、LiC6、Li3C24、LiC12、LiC16、Li2C36、LiC24)、插层型-II(LiC4、Li2C12、LiC8、LiC12、LiC16)和沉积与插层共存型-III(Li3C12)。随着锂原子浓度的增加,金属性和电子-声子耦合(EPC)都急剧增加,这有利于在筛选出的锂-碳化合物中出现超导性。值得注意的是,夹杂了 Li2 原子的石墨烯超晶格结构具有更高的稳定性,而相同浓度的 Li1 沉积石墨烯会产生更高的 Tc。其中,I型-Li2C6、I型-Li2C8、II型-LiC4和III型-Li3C12是声子介导超导体,它们的高转变温度(Tc)分别为18、12、3.4和14 K。I型-Li2C6、I型-Li2C8和III型-Li3C12的EPC主要来自C-2pz电子态与低频(0-800 cm-1)沉积-Lixy/Liz和平面外-Cz振动的耦合。相反,面内-Cxy 原子的高频(800-1600 cm-1)振动模式则是 II 型 LiC4 Tc 的主要成因。这些发现全面揭示了掺锂石墨烯的超导极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Probing the Superconductivity Limit of Li-Doped Graphene

Probing the Superconductivity Limit of Li-Doped Graphene

Probing the Superconductivity Limit of Li-Doped Graphene

Probing the Superconductivity Limit of Li-Doped Graphene

The introduction of superconductivity in graphene systems is highly desirable from both fundamental physics and application perspectives. In this article, a superlattice strategy to develop a series of Li-doped graphene is reported: deposition type-I (Li2C6, Li2C8, LiC6, Li3C24, LiC12, LiC16, Li2C36, LiC24), intercalation type-II (LiC4, Li2C12, LiC8, LiC12, LiC16), and coexisting deposition and intercalation type-III (Li3C12). With increasing concentration of Li atoms, both metallicity, and electron–phonon coupling (EPC) has dramatically increased, which is favorable for the emergence of superconductivity in the screened Li–C compounds. Notably, graphene superlattice structures with intercalated Li2 atoms have higher stability, while Li1-deposited graphene at the same concentration produces higher Tc. Among them, type-I-Li2C6, type-I-Li2C8, type-II-LiC4, and type-III-Li3C12 are phonon-mediated superconductors with high transition temperatures (Tc) of 18, 12, 3.4, and 14 K, respectively. The EPC of type-I-Li2C6, type-I-Li2C8, and type-III-Li3C12 mainly arises from the coupling of the C-2pz electron states with the low-frequency (0–800 cm−1) deposition-Lixy/Liz, and out-of-plane-Cz vibrations. In contrast, the high-frequency (800–1600 cm−1) vibration modes of in-plane-Cxy atoms are mainly responsible for the Tc of type-II-LiC4. The findings provide comprehensive insights into the superconductivity limit of Li-doped graphene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信