Mario Riverol , Mirla M. Ríos-Rivera , Laura Imaz-Aguayo , Sergio M. Solis-Barquero , Carlota Arrondo , Genoveva Montoya-Murillo , Rafael Villino-Rodríguez , Reyes García-Eulate , Pablo Domínguez , Maria A. Fernández-Seara
{"title":"与临床样本主观认知能力下降相关的神经影像结构变化","authors":"Mario Riverol , Mirla M. Ríos-Rivera , Laura Imaz-Aguayo , Sergio M. Solis-Barquero , Carlota Arrondo , Genoveva Montoya-Murillo , Rafael Villino-Rodríguez , Reyes García-Eulate , Pablo Domínguez , Maria A. Fernández-Seara","doi":"10.1016/j.nicl.2024.103615","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Alzheimer’s disease (AD) is characterized by progressive deterioration of cognitive functions. Some individuals with subjective cognitive decline (SCD) are in the early phase of the disease and subsequently progress through the AD continuum. Although neuroimaging biomarkers could be used for the accurate and early diagnosis of preclinical AD, the findings in SCD samples have been heterogeneous. This study established the morphological differences in brain magnetic resonance imaging (MRI) findings between individuals with SCD and those without cognitive impairment based on a clinical sample of patients defined according to SCD-Initiative recommendations. Moreover, we investigated baseline structural changes in the brains of participants who remained stable or progressed to mild cognitive impairment or dementia.</p></div><div><h3>Methods</h3><p>This study included 309 participants with SCD and 43 healthy controls (HCs) with high-quality brain MRI at baseline. Among the 99 subjects in the SCD group who were followed clinically, 32 progressed (SCDp) and 67 remained stable (SCDnp). A voxel-wise statistical comparison of gray and white matter (WM) volume was performed between the HC and SCD groups and between the HC, SCDp, and SCDnp groups. XTRACT ATLAS was used to define the anatomical location of WM tract damage. Region-of-interest (ROI) analyses were performed to determine brain volumetric differences. White matter lesion (WML) burden was established in each group.</p></div><div><h3>Results</h3><p>Voxel-based morphometry (VBM) analysis revealed that the SCD group exhibited gray matter atrophy in the middle frontal gyri, superior orbital gyri, superior frontal gyri, right rectal gyrus, whole occipital lobule, and both thalami and precunei. Meanwhile, ROI analysis revealed decreased volume in the left rectal gyrus, bilateral medial orbital gyri, middle frontal gyri, superior frontal gyri, calcarine fissure, and left thalamus. The SCDp group exhibited greater hippocampal atrophy (<em>p</em> < 0.001) than the SCDnp and HC groups on ROI analyses. On VBM analysis, however, the SCDp group exhibited increased hippocampal atrophy only when compared to the SCDnp group (<em>p</em> < 0.001). The SCD group demonstrated lower WM volume in the uncinate fasciculus, cingulum, inferior fronto-occipital fasciculus, anterior thalamic radiation, and callosum forceps than the HC group. However, no significant differences in WML number (<em>p</em> = 0.345) or volume (<em>p</em> = 0.156) were observed between the SCD and HC groups.</p></div><div><h3>Conclusions</h3><p>The SCD group showed brain atrophy mainly in the frontal and occipital lobes. However, only the SCDp group demonstrated atrophy in the medial temporal lobe at baseline. Structural damage in the brain regions was anatomically connected, which may contribute to early memory decline.</p></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"42 ","pages":"Article 103615"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213158224000548/pdfft?md5=361b08689abba6d96d138ce45d3bc2da&pid=1-s2.0-S2213158224000548-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural neuroimaging changes associated with subjective cognitive decline from a clinical sample\",\"authors\":\"Mario Riverol , Mirla M. Ríos-Rivera , Laura Imaz-Aguayo , Sergio M. Solis-Barquero , Carlota Arrondo , Genoveva Montoya-Murillo , Rafael Villino-Rodríguez , Reyes García-Eulate , Pablo Domínguez , Maria A. Fernández-Seara\",\"doi\":\"10.1016/j.nicl.2024.103615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Alzheimer’s disease (AD) is characterized by progressive deterioration of cognitive functions. Some individuals with subjective cognitive decline (SCD) are in the early phase of the disease and subsequently progress through the AD continuum. Although neuroimaging biomarkers could be used for the accurate and early diagnosis of preclinical AD, the findings in SCD samples have been heterogeneous. This study established the morphological differences in brain magnetic resonance imaging (MRI) findings between individuals with SCD and those without cognitive impairment based on a clinical sample of patients defined according to SCD-Initiative recommendations. Moreover, we investigated baseline structural changes in the brains of participants who remained stable or progressed to mild cognitive impairment or dementia.</p></div><div><h3>Methods</h3><p>This study included 309 participants with SCD and 43 healthy controls (HCs) with high-quality brain MRI at baseline. Among the 99 subjects in the SCD group who were followed clinically, 32 progressed (SCDp) and 67 remained stable (SCDnp). A voxel-wise statistical comparison of gray and white matter (WM) volume was performed between the HC and SCD groups and between the HC, SCDp, and SCDnp groups. XTRACT ATLAS was used to define the anatomical location of WM tract damage. Region-of-interest (ROI) analyses were performed to determine brain volumetric differences. White matter lesion (WML) burden was established in each group.</p></div><div><h3>Results</h3><p>Voxel-based morphometry (VBM) analysis revealed that the SCD group exhibited gray matter atrophy in the middle frontal gyri, superior orbital gyri, superior frontal gyri, right rectal gyrus, whole occipital lobule, and both thalami and precunei. Meanwhile, ROI analysis revealed decreased volume in the left rectal gyrus, bilateral medial orbital gyri, middle frontal gyri, superior frontal gyri, calcarine fissure, and left thalamus. The SCDp group exhibited greater hippocampal atrophy (<em>p</em> < 0.001) than the SCDnp and HC groups on ROI analyses. On VBM analysis, however, the SCDp group exhibited increased hippocampal atrophy only when compared to the SCDnp group (<em>p</em> < 0.001). The SCD group demonstrated lower WM volume in the uncinate fasciculus, cingulum, inferior fronto-occipital fasciculus, anterior thalamic radiation, and callosum forceps than the HC group. However, no significant differences in WML number (<em>p</em> = 0.345) or volume (<em>p</em> = 0.156) were observed between the SCD and HC groups.</p></div><div><h3>Conclusions</h3><p>The SCD group showed brain atrophy mainly in the frontal and occipital lobes. However, only the SCDp group demonstrated atrophy in the medial temporal lobe at baseline. Structural damage in the brain regions was anatomically connected, which may contribute to early memory decline.</p></div>\",\"PeriodicalId\":54359,\"journal\":{\"name\":\"Neuroimage-Clinical\",\"volume\":\"42 \",\"pages\":\"Article 103615\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213158224000548/pdfft?md5=361b08689abba6d96d138ce45d3bc2da&pid=1-s2.0-S2213158224000548-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage-Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213158224000548\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158224000548","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
摘要
背景阿尔茨海默病(AD)的特点是认知功能逐渐退化。一些主观认知能力下降(SCD)的患者处于疾病的早期阶段,随后会逐渐发展为AD。虽然神经影像生物标志物可用于临床前 AD 的早期准确诊断,但对 SCD 样本的研究结果却不尽相同。本研究基于根据 SCD 倡议建议定义的临床样本,确定了 SCD 患者与无认知障碍患者之间脑磁共振成像(MRI)结果的形态学差异。此外,我们还调查了保持稳定或发展为轻度认知障碍或痴呆症的参与者的大脑基线结构变化。在接受临床随访的 SCD 组 99 名受试者中,32 人病情恶化(SCDp),67 人病情保持稳定(SCDnp)。在 HC 组和 SCD 组之间,以及 HC 组、SCDp 组和 SCDnp 组之间,对灰质和白质(WM)体积进行了体素统计比较。XTRACT ATLAS用于确定WM束损伤的解剖位置。进行感兴趣区(ROI)分析以确定脑容量差异。结果基于体素的形态计量学(VBM)分析显示,SCD 组的额叶中回、眶上回、额上回、右直回、整个枕叶以及丘脑和丘脑前叶都出现了灰质萎缩。同时,ROI 分析显示左侧直回、双侧眶内侧回、额中回、额上回、钙化裂和左侧丘脑的体积减少。在 ROI 分析中,SCDp 组的海马萎缩程度(p < 0.001)高于 SCDnp 组和 HC 组。然而,与 SCDnp 组相比,SCDp 组在 VBM 分析中仅表现出海马萎缩加重(p < 0.001)。与 HC 组相比,SCD 组的钩状束、齿状束、下前枕状束、丘脑前部辐射和胼胝体镊的 WM 容量较低。结论SCD组的脑萎缩主要表现在额叶和枕叶。然而,只有 SCDp 组在基线时表现出内侧颞叶萎缩。这些脑区的结构性损伤在解剖学上相互关联,这可能是导致早期记忆力衰退的原因之一。
Structural neuroimaging changes associated with subjective cognitive decline from a clinical sample
Background
Alzheimer’s disease (AD) is characterized by progressive deterioration of cognitive functions. Some individuals with subjective cognitive decline (SCD) are in the early phase of the disease and subsequently progress through the AD continuum. Although neuroimaging biomarkers could be used for the accurate and early diagnosis of preclinical AD, the findings in SCD samples have been heterogeneous. This study established the morphological differences in brain magnetic resonance imaging (MRI) findings between individuals with SCD and those without cognitive impairment based on a clinical sample of patients defined according to SCD-Initiative recommendations. Moreover, we investigated baseline structural changes in the brains of participants who remained stable or progressed to mild cognitive impairment or dementia.
Methods
This study included 309 participants with SCD and 43 healthy controls (HCs) with high-quality brain MRI at baseline. Among the 99 subjects in the SCD group who were followed clinically, 32 progressed (SCDp) and 67 remained stable (SCDnp). A voxel-wise statistical comparison of gray and white matter (WM) volume was performed between the HC and SCD groups and between the HC, SCDp, and SCDnp groups. XTRACT ATLAS was used to define the anatomical location of WM tract damage. Region-of-interest (ROI) analyses were performed to determine brain volumetric differences. White matter lesion (WML) burden was established in each group.
Results
Voxel-based morphometry (VBM) analysis revealed that the SCD group exhibited gray matter atrophy in the middle frontal gyri, superior orbital gyri, superior frontal gyri, right rectal gyrus, whole occipital lobule, and both thalami and precunei. Meanwhile, ROI analysis revealed decreased volume in the left rectal gyrus, bilateral medial orbital gyri, middle frontal gyri, superior frontal gyri, calcarine fissure, and left thalamus. The SCDp group exhibited greater hippocampal atrophy (p < 0.001) than the SCDnp and HC groups on ROI analyses. On VBM analysis, however, the SCDp group exhibited increased hippocampal atrophy only when compared to the SCDnp group (p < 0.001). The SCD group demonstrated lower WM volume in the uncinate fasciculus, cingulum, inferior fronto-occipital fasciculus, anterior thalamic radiation, and callosum forceps than the HC group. However, no significant differences in WML number (p = 0.345) or volume (p = 0.156) were observed between the SCD and HC groups.
Conclusions
The SCD group showed brain atrophy mainly in the frontal and occipital lobes. However, only the SCDp group demonstrated atrophy in the medial temporal lobe at baseline. Structural damage in the brain regions was anatomically connected, which may contribute to early memory decline.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.