具有摩擦型边界条件的非牛顿非稳态流体流动:剪切稀化流体的情况

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mahdi Boukrouche , Hanene Debbiche , Laetitia Paoli
{"title":"具有摩擦型边界条件的非牛顿非稳态流体流动:剪切稀化流体的情况","authors":"Mahdi Boukrouche ,&nbsp;Hanene Debbiche ,&nbsp;Laetitia Paoli","doi":"10.1016/j.na.2024.113555","DOIUrl":null,"url":null,"abstract":"<div><p>Following the previous part of our study on unsteady non-Newtonian fluid flows with boundary conditions of friction type we consider in this paper the case of pseudo-plastic (shear thinning) fluids. The problem is described by a <span><math><mi>p</mi></math></span>-Laplacian non-stationary Stokes system with <span><math><mrow><mi>p</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span> and we assume that the fluid is subjected to mixed boundary conditions, namely non-homogeneous Dirichlet boundary conditions on a part of the boundary and a slip fluid-solid interface law of friction type on another part of the boundary. Hence the fluid velocity should belong to a subspace of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><mrow><mo>(</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>Ω</mi></math></span> is the flow domain and <span><math><mrow><mi>T</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, and satisfy a non-linear parabolic variational inequality. In order to solve this problem we introduce first a vanishing viscosity technique which allows us to consider an auxiliary problem formulated in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><mrow><mo>(</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>&gt;</mo><mn>2</mn></mrow></math></span> the conjugate number of <span><math><mi>p</mi></math></span> and to use the existence results already established in Boukrouche et al. (2020). Then we apply both compactness arguments and a fixed point method to prove the existence of a solution to our original fluid flow problem.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsteady non-Newtonian fluid flows with boundary conditions of friction type: The case of shear thinning fluids\",\"authors\":\"Mahdi Boukrouche ,&nbsp;Hanene Debbiche ,&nbsp;Laetitia Paoli\",\"doi\":\"10.1016/j.na.2024.113555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Following the previous part of our study on unsteady non-Newtonian fluid flows with boundary conditions of friction type we consider in this paper the case of pseudo-plastic (shear thinning) fluids. The problem is described by a <span><math><mi>p</mi></math></span>-Laplacian non-stationary Stokes system with <span><math><mrow><mi>p</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span> and we assume that the fluid is subjected to mixed boundary conditions, namely non-homogeneous Dirichlet boundary conditions on a part of the boundary and a slip fluid-solid interface law of friction type on another part of the boundary. Hence the fluid velocity should belong to a subspace of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><mrow><mo>(</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>Ω</mi></math></span> is the flow domain and <span><math><mrow><mi>T</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, and satisfy a non-linear parabolic variational inequality. In order to solve this problem we introduce first a vanishing viscosity technique which allows us to consider an auxiliary problem formulated in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><mrow><mo>(</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>&gt;</mo><mn>2</mn></mrow></math></span> the conjugate number of <span><math><mi>p</mi></math></span> and to use the existence results already established in Boukrouche et al. (2020). Then we apply both compactness arguments and a fixed point method to prove the existence of a solution to our original fluid flow problem.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24000749\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24000749","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

继上一部分关于具有摩擦型边界条件的非稳态非牛顿流体流动的研究之后,本文将考虑伪塑性(剪切稀化)流体的情况。问题由 p<2 的 p-Laplacian 非稳态斯托克斯系统描述,我们假设流体受到混合边界条件的影响,即一部分边界上的非均质 Dirichlet 边界条件和另一部分边界上的摩擦型滑移流固界面法则。因此,流体速度应属于 Lp(0,T;(W1,p(Ω)3)) 的子空间,其中 Ω 为流域,T>0,并满足非线性抛物线变分不等式。为了解决这个问题,我们首先引入了粘性消失技术,它允许我们考虑在 Lp′(0,T;(W1,p′(Ω)3))中提出的辅助问题,p′>2 为 p 的共轭数,并使用 Boukrouche 等人 (2020) 中已建立的存在性结果。然后,我们运用紧凑性论证和定点法来证明原始流体流动问题解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsteady non-Newtonian fluid flows with boundary conditions of friction type: The case of shear thinning fluids

Following the previous part of our study on unsteady non-Newtonian fluid flows with boundary conditions of friction type we consider in this paper the case of pseudo-plastic (shear thinning) fluids. The problem is described by a p-Laplacian non-stationary Stokes system with p<2 and we assume that the fluid is subjected to mixed boundary conditions, namely non-homogeneous Dirichlet boundary conditions on a part of the boundary and a slip fluid-solid interface law of friction type on another part of the boundary. Hence the fluid velocity should belong to a subspace of Lp(0,T;(W1,p(Ω)3)), where Ω is the flow domain and T>0, and satisfy a non-linear parabolic variational inequality. In order to solve this problem we introduce first a vanishing viscosity technique which allows us to consider an auxiliary problem formulated in Lp(0,T;(W1,p(Ω)3)) with p>2 the conjugate number of p and to use the existence results already established in Boukrouche et al. (2020). Then we apply both compactness arguments and a fixed point method to prove the existence of a solution to our original fluid flow problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信