Riyanto Setiyono , Muhammad Ihda H.L. Zein , Pamungkas Daud , Anni Anggraeni , Yeni Wahyuni Hartati , Husein Hernandi Bahti
{"title":"基于铈的新型自制印刷电路板电化学装置,用于快速检测高血压生物标志物上皮钠通道 (ENaC)","authors":"Riyanto Setiyono , Muhammad Ihda H.L. Zein , Pamungkas Daud , Anni Anggraeni , Yeni Wahyuni Hartati , Husein Hernandi Bahti","doi":"10.1016/j.snr.2024.100200","DOIUrl":null,"url":null,"abstract":"<div><p>The Epithelial Sodium Channel (ENaC) is a protein that plays a role in the cellular intake of salt and is known as one of the biomarkers for hypertension in the human body. Higher concentrations of sodium lead to increased activity of the ENaC protein in sodium absorption. In this study, a self-made immunosensor was developed using a homemade Printed Circuit Board-Screen Printed Carbon Electrode (PCB-SPCE) modified with cerium oxide. Anti-ENaC was immobilized on the surface of PCB-SPCE/ceria at pH 7.4, relying on the interaction between carboxyl groups of anti-ENaC and cerium oxide to detect the ENaC protein. Additionally, a portable in-house potentiostat named “UnpadStat” was developed for integration with the immunosensor. UnpadStat features a 5-in. touch screen display to showcase measurement data. Cyclic voltammetry measurements using the redox system of K<sub>3</sub>[Fe(CN)<sub>6</sub>] were applied to bare PCB-SPCE, PCB-SPCE/Ceria, PCB-SPCE/Ceria/Anti-ENaC, and PCB-SPCE/Ceria/Anti-ENaC/ENaC. Measurement results indicated an increase in current after modification with cerium, reaching 73.805 µA compared to unmodified (63.256 µA). After anti-ENaC immobilization, there was a decrease in current to 64.456 µA, and upon binding with the ENaC protein, a further decrease in current occurred, corresponding to the concentration of the ENaC protein. The detection limit obtained in this study was 0.133 ng/mL, and the quantification limit was 0.444 ng/mL for the concentration range of ENaC protein from 0.375 ng/mL to 6.0 ng/mL. The integration of the PCB-based immunosensor and UnpadStat can be utilized to determine the levels of ENaC protein in non-hypertensive urine samples and hypertensive patients.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"7 ","pages":"Article 100200"},"PeriodicalIF":6.5000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266605392400016X/pdfft?md5=9430a59bf2ed910565099fc08e430d04&pid=1-s2.0-S266605392400016X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel in-house built printed circuit board-ceria based electrochemical device for rapid detection of Epithelial Sodium Channel (ENaC), a hypertension biomarker\",\"authors\":\"Riyanto Setiyono , Muhammad Ihda H.L. Zein , Pamungkas Daud , Anni Anggraeni , Yeni Wahyuni Hartati , Husein Hernandi Bahti\",\"doi\":\"10.1016/j.snr.2024.100200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Epithelial Sodium Channel (ENaC) is a protein that plays a role in the cellular intake of salt and is known as one of the biomarkers for hypertension in the human body. Higher concentrations of sodium lead to increased activity of the ENaC protein in sodium absorption. In this study, a self-made immunosensor was developed using a homemade Printed Circuit Board-Screen Printed Carbon Electrode (PCB-SPCE) modified with cerium oxide. Anti-ENaC was immobilized on the surface of PCB-SPCE/ceria at pH 7.4, relying on the interaction between carboxyl groups of anti-ENaC and cerium oxide to detect the ENaC protein. Additionally, a portable in-house potentiostat named “UnpadStat” was developed for integration with the immunosensor. UnpadStat features a 5-in. touch screen display to showcase measurement data. Cyclic voltammetry measurements using the redox system of K<sub>3</sub>[Fe(CN)<sub>6</sub>] were applied to bare PCB-SPCE, PCB-SPCE/Ceria, PCB-SPCE/Ceria/Anti-ENaC, and PCB-SPCE/Ceria/Anti-ENaC/ENaC. Measurement results indicated an increase in current after modification with cerium, reaching 73.805 µA compared to unmodified (63.256 µA). After anti-ENaC immobilization, there was a decrease in current to 64.456 µA, and upon binding with the ENaC protein, a further decrease in current occurred, corresponding to the concentration of the ENaC protein. The detection limit obtained in this study was 0.133 ng/mL, and the quantification limit was 0.444 ng/mL for the concentration range of ENaC protein from 0.375 ng/mL to 6.0 ng/mL. The integration of the PCB-based immunosensor and UnpadStat can be utilized to determine the levels of ENaC protein in non-hypertensive urine samples and hypertensive patients.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"7 \",\"pages\":\"Article 100200\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266605392400016X/pdfft?md5=9430a59bf2ed910565099fc08e430d04&pid=1-s2.0-S266605392400016X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266605392400016X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266605392400016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A novel in-house built printed circuit board-ceria based electrochemical device for rapid detection of Epithelial Sodium Channel (ENaC), a hypertension biomarker
The Epithelial Sodium Channel (ENaC) is a protein that plays a role in the cellular intake of salt and is known as one of the biomarkers for hypertension in the human body. Higher concentrations of sodium lead to increased activity of the ENaC protein in sodium absorption. In this study, a self-made immunosensor was developed using a homemade Printed Circuit Board-Screen Printed Carbon Electrode (PCB-SPCE) modified with cerium oxide. Anti-ENaC was immobilized on the surface of PCB-SPCE/ceria at pH 7.4, relying on the interaction between carboxyl groups of anti-ENaC and cerium oxide to detect the ENaC protein. Additionally, a portable in-house potentiostat named “UnpadStat” was developed for integration with the immunosensor. UnpadStat features a 5-in. touch screen display to showcase measurement data. Cyclic voltammetry measurements using the redox system of K3[Fe(CN)6] were applied to bare PCB-SPCE, PCB-SPCE/Ceria, PCB-SPCE/Ceria/Anti-ENaC, and PCB-SPCE/Ceria/Anti-ENaC/ENaC. Measurement results indicated an increase in current after modification with cerium, reaching 73.805 µA compared to unmodified (63.256 µA). After anti-ENaC immobilization, there was a decrease in current to 64.456 µA, and upon binding with the ENaC protein, a further decrease in current occurred, corresponding to the concentration of the ENaC protein. The detection limit obtained in this study was 0.133 ng/mL, and the quantification limit was 0.444 ng/mL for the concentration range of ENaC protein from 0.375 ng/mL to 6.0 ng/mL. The integration of the PCB-based immunosensor and UnpadStat can be utilized to determine the levels of ENaC protein in non-hypertensive urine samples and hypertensive patients.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.