Ujjal Dey , Supriti Sen , Cheruvu Siva Kumar , Chacko Jacob
{"title":"扫描电子显微镜内微型机械手的路径规划和用于构建纳米器件的 CNT 三维纳米机械手","authors":"Ujjal Dey , Supriti Sen , Cheruvu Siva Kumar , Chacko Jacob","doi":"10.1016/j.mechatronics.2024.103196","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of a nano-laboratory inside an SEM involves performing a sequence of tasks in a continuous pattern. Robotic systems with nanoscale motion resolution facilitate in-situ manipulation and characterization of nanomaterials to assemble nanodevices inside SEMs. Precise motion control of micromanipulators is required at both macro and micro-nano scales to effectively execute multiple sequential experimental tasks in nanofabrication. However, managing the entire nanomanipulation setup is challenging due to the constricted workspace inside an SEM and the lack of proper process feedback information at that scale. This study explores the application of path planning algorithms to generate a collision-free motion path for the micromanipulators operating within the confined space of an SEM. A MATLAB-based computational tool is first developed using PRM and Dijkstra's path planning algorithms. Considering environmental constraints, the program generates an optimal motion path for the micromanipulators, facilitating automatic configuration changes within the SEM chamber. It ensures a seamless workflow and facilitates the smooth integration of additional experimental tools within the existing setup. Manipulation strategies using the nanorobotic setup are established based on the application of the developed path planning module. A pick-and-place 3D nanomanipulation technique of CNTs using cooperative control of dual micromanipulators has been demonstrated for nanodevice construction. Additionally, the electrical response of individually manipulated CNTs is recorded using a two-probe measurement technique.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"101 ","pages":"Article 103196"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path planning of micromanipulators inside an SEM and 3D nanomanipulation of CNTs for nanodevice construction\",\"authors\":\"Ujjal Dey , Supriti Sen , Cheruvu Siva Kumar , Chacko Jacob\",\"doi\":\"10.1016/j.mechatronics.2024.103196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The concept of a nano-laboratory inside an SEM involves performing a sequence of tasks in a continuous pattern. Robotic systems with nanoscale motion resolution facilitate in-situ manipulation and characterization of nanomaterials to assemble nanodevices inside SEMs. Precise motion control of micromanipulators is required at both macro and micro-nano scales to effectively execute multiple sequential experimental tasks in nanofabrication. However, managing the entire nanomanipulation setup is challenging due to the constricted workspace inside an SEM and the lack of proper process feedback information at that scale. This study explores the application of path planning algorithms to generate a collision-free motion path for the micromanipulators operating within the confined space of an SEM. A MATLAB-based computational tool is first developed using PRM and Dijkstra's path planning algorithms. Considering environmental constraints, the program generates an optimal motion path for the micromanipulators, facilitating automatic configuration changes within the SEM chamber. It ensures a seamless workflow and facilitates the smooth integration of additional experimental tools within the existing setup. Manipulation strategies using the nanorobotic setup are established based on the application of the developed path planning module. A pick-and-place 3D nanomanipulation technique of CNTs using cooperative control of dual micromanipulators has been demonstrated for nanodevice construction. Additionally, the electrical response of individually manipulated CNTs is recorded using a two-probe measurement technique.</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"101 \",\"pages\":\"Article 103196\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000618\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000618","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Path planning of micromanipulators inside an SEM and 3D nanomanipulation of CNTs for nanodevice construction
The concept of a nano-laboratory inside an SEM involves performing a sequence of tasks in a continuous pattern. Robotic systems with nanoscale motion resolution facilitate in-situ manipulation and characterization of nanomaterials to assemble nanodevices inside SEMs. Precise motion control of micromanipulators is required at both macro and micro-nano scales to effectively execute multiple sequential experimental tasks in nanofabrication. However, managing the entire nanomanipulation setup is challenging due to the constricted workspace inside an SEM and the lack of proper process feedback information at that scale. This study explores the application of path planning algorithms to generate a collision-free motion path for the micromanipulators operating within the confined space of an SEM. A MATLAB-based computational tool is first developed using PRM and Dijkstra's path planning algorithms. Considering environmental constraints, the program generates an optimal motion path for the micromanipulators, facilitating automatic configuration changes within the SEM chamber. It ensures a seamless workflow and facilitates the smooth integration of additional experimental tools within the existing setup. Manipulation strategies using the nanorobotic setup are established based on the application of the developed path planning module. A pick-and-place 3D nanomanipulation technique of CNTs using cooperative control of dual micromanipulators has been demonstrated for nanodevice construction. Additionally, the electrical response of individually manipulated CNTs is recorded using a two-probe measurement technique.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.