{"title":"一些特殊序列的弗罗贝尼斯数的组合方法","authors":"Feihu Liu, Guoce Xin","doi":"10.1016/j.aam.2024.102719","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>A</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> be relative prime positive integers with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≥</mo><mn>2</mn></math></span>. The Frobenius number <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is the greatest integer not belonging to the set <span><math><mo>{</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>N</mi><mo>}</mo></math></span>. The general Frobenius problem includes the determination of <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and the related Sylvester number <span><math><mi>n</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and Sylvester sum <span><math><mi>s</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. We present a combinatorial approach to the Frobenius problem. Basically, we transform the problem into an easier optimization problem. If the new problem can be solved explicitly, then we obtain a formula for <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. We illustrate the idea by giving concise proofs and extensions of several existing formulas, as well as new formulas for <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>,</mo><mi>n</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>,</mo><mi>s</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. Moreover, we give a generating function approach to <span><math><mi>n</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>,</mo><mi>s</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, and even to the more general Sylvester power sum.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combinatorial approach to Frobenius numbers of some special sequences\",\"authors\":\"Feihu Liu, Guoce Xin\",\"doi\":\"10.1016/j.aam.2024.102719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>A</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> be relative prime positive integers with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≥</mo><mn>2</mn></math></span>. The Frobenius number <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is the greatest integer not belonging to the set <span><math><mo>{</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>N</mi><mo>}</mo></math></span>. The general Frobenius problem includes the determination of <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and the related Sylvester number <span><math><mi>n</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and Sylvester sum <span><math><mi>s</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. We present a combinatorial approach to the Frobenius problem. Basically, we transform the problem into an easier optimization problem. If the new problem can be solved explicitly, then we obtain a formula for <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. We illustrate the idea by giving concise proofs and extensions of several existing formulas, as well as new formulas for <span><math><mi>g</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>,</mo><mi>n</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>,</mo><mi>s</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. Moreover, we give a generating function approach to <span><math><mi>n</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>,</mo><mi>s</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, and even to the more general Sylvester power sum.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000514\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000514","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A combinatorial approach to Frobenius numbers of some special sequences
Let be relative prime positive integers with . The Frobenius number is the greatest integer not belonging to the set . The general Frobenius problem includes the determination of and the related Sylvester number and Sylvester sum . We present a combinatorial approach to the Frobenius problem. Basically, we transform the problem into an easier optimization problem. If the new problem can be solved explicitly, then we obtain a formula for . We illustrate the idea by giving concise proofs and extensions of several existing formulas, as well as new formulas for . Moreover, we give a generating function approach to , and even to the more general Sylvester power sum.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.