南大洋推动了海因里希-斯泰迪尔斯期间大气中二氧化碳的十年期上升。

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kathleen A Wendt, Christoph Nehrbass-Ahles, Kyle Niezgoda, David Noone, Michael Kalk, Laurie Menviel, Julia Gottschalk, James W B Rae, Jochen Schmitt, Hubertus Fischer, Thomas F Stocker, Juan Muglia, David Ferreira, Shaun A Marcott, Edward Brook, Christo Buizert
{"title":"南大洋推动了海因里希-斯泰迪尔斯期间大气中二氧化碳的十年期上升。","authors":"Kathleen A Wendt, Christoph Nehrbass-Ahles, Kyle Niezgoda, David Noone, Michael Kalk, Laurie Menviel, Julia Gottschalk, James W B Rae, Jochen Schmitt, Hubertus Fischer, Thomas F Stocker, Juan Muglia, David Ferreira, Shaun A Marcott, Edward Brook, Christo Buizert","doi":"10.1073/pnas.2319652121","DOIUrl":null,"url":null,"abstract":"<p><p>The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO<sub>2</sub> measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO<sub>2</sub> concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO<sub>2</sub> are concurrent with jumps in atmospheric CH<sub>4</sub> and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO<sub>2</sub> uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 21","pages":"e2319652121"},"PeriodicalIF":9.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126997/pdf/","citationCount":"0","resultStr":"{\"title\":\"Southern Ocean drives multidecadal atmospheric CO<sub>2</sub> rise during Heinrich Stadials.\",\"authors\":\"Kathleen A Wendt, Christoph Nehrbass-Ahles, Kyle Niezgoda, David Noone, Michael Kalk, Laurie Menviel, Julia Gottschalk, James W B Rae, Jochen Schmitt, Hubertus Fischer, Thomas F Stocker, Juan Muglia, David Ferreira, Shaun A Marcott, Edward Brook, Christo Buizert\",\"doi\":\"10.1073/pnas.2319652121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO<sub>2</sub> measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO<sub>2</sub> concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO<sub>2</sub> are concurrent with jumps in atmospheric CH<sub>4</sub> and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO<sub>2</sub> uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"121 21\",\"pages\":\"e2319652121\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126997/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2319652121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2319652121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在上一个冰川期,北大西洋地区出现了寒冷的间歇期,最终导致冰山大面积下泄。这些寒冷间歇期被称为 "海因里希冰期"(Heinrich Stadials),与全球气候的突然转变有关。在这里,我们以十年尺度的分辨率展示了南极西部冰盖分水岭冰芯在海因里希周期 2 至 5 中的二氧化碳测量结果。我们的研究结果表明,在每个海因里希晚期,大气中的二氧化碳浓度都出现了十年尺度的跃变。最大的变化幅度(55 ± 10 年内 14.0 ± 0.8 ppm)发生在海因里希第 4 个恒期。大气中二氧化碳浓度的急剧上升与大气中甲烷浓度的急剧上升以及多个南极冰芯中水同位素的急剧变化同时发生,后者表明南极洲和南大洋水汽源区域都在迅速变暖。这些快速变化的同步性表明,南大洋中相对温暖、富含碳的海水在风的驱动下上涌,这可能与南半球西风向极地加强有关。我们利用一个同位素大气环流模式表明,观测到的南极水体同位素变化可以用南大洋突然和广泛变暖来解释。我们的工作提供了南大洋对大气环流变化的多年代至百年尺度响应的证据,证明了南大洋生物地球化学和环流在人类时间尺度上发生动态变化的潜力。此外,它还表明,南大洋的人为二氧化碳吸收可能会随着今天和未来西风的向极增强而减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Southern Ocean drives multidecadal atmospheric CO2 rise during Heinrich Stadials.

The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO2 measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO2 concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO2 are concurrent with jumps in atmospheric CH4 and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO2 uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信