Seyed Amir Farzam, Shahram Darabi, Hashem Haghdoost-Yazdi, Yasamin Zaferani
{"title":"右美托咪定是α-2肾上腺素受体激动剂,它对黑质中的多巴胺能神经元具有神经保护作用,并能减轻 6-羟基多巴胺帕金森病动物模型的葡萄糖失衡。","authors":"Seyed Amir Farzam, Shahram Darabi, Hashem Haghdoost-Yazdi, Yasamin Zaferani","doi":"10.1080/01616412.2024.2354084","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Studies have shown that dexmedetomidine (DEX, an a2-adrenoceptors agonist) provides a neuroprotective effect and influences blood glucose levels. Here, we evaluated the effect of prolonged treatment with low doses of DEX on the survival rate of dopaminergic (DAergic) neurons in the substantia nigra and also serum glucose levels in 6-hydroxydopamine (6-OHDA) - induced Parkinson's disease (PD) in the rat.</p><p><strong>Material and methods: </strong>The neurotoxin of 6-OHDA was injected into the medial forebrain bundle by stereotaxic surgery. DEX (25 and 50 µg/kg, i.p) and yohimbine, an a2-adrenoceptor antagonist (1 mg/kg, i.p) were administered before the surgery to the 13 weeks afterward. Apomorphine-induced rotational tests and blood sampling were carried out before the surgery and multiple weeks after that. Thirteen weeks after the surgery, the rats' brain was transcardially perfused to assess the survival rate of DAergic neurons using the tyrosine hydroxylase (TH) immunohistochemistry.</p><p><strong>Results: </strong>DEX remarkably attenuated the severity of rotational behavior and reversed the progress of the PD. It also increased the number of TH-labeled neurons by up to 60%. The serum glucose levels in 6-OHDA-received rats did not change in the third and seventh weeks after the surgery but decreased significantly in the thirteenth week. Treatment with DEX prevented this decrement in glucose levels. On the other hand, Treatment with yohimbine did not affect PD symptoms and glucose levels.</p><p><strong>Conclusion: </strong>Our data indicate that DEX through neuroprotective activity attenuates the severity of 6-OHDA-induced PD in rats. DEX might also prevent hypoglycemia during the progress of the PD.</p>","PeriodicalId":19131,"journal":{"name":"Neurological Research","volume":" ","pages":"763-771"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dexmedetomidine, an alpha-2 adrenoceptors agonist, provides a neuroprotective effect for dopaminergic neurons in the substantia nigra and attenuates glucose imbalance in the 6-hydroxydopamine animal model of Parkinson's disease.\",\"authors\":\"Seyed Amir Farzam, Shahram Darabi, Hashem Haghdoost-Yazdi, Yasamin Zaferani\",\"doi\":\"10.1080/01616412.2024.2354084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Studies have shown that dexmedetomidine (DEX, an a2-adrenoceptors agonist) provides a neuroprotective effect and influences blood glucose levels. Here, we evaluated the effect of prolonged treatment with low doses of DEX on the survival rate of dopaminergic (DAergic) neurons in the substantia nigra and also serum glucose levels in 6-hydroxydopamine (6-OHDA) - induced Parkinson's disease (PD) in the rat.</p><p><strong>Material and methods: </strong>The neurotoxin of 6-OHDA was injected into the medial forebrain bundle by stereotaxic surgery. DEX (25 and 50 µg/kg, i.p) and yohimbine, an a2-adrenoceptor antagonist (1 mg/kg, i.p) were administered before the surgery to the 13 weeks afterward. Apomorphine-induced rotational tests and blood sampling were carried out before the surgery and multiple weeks after that. Thirteen weeks after the surgery, the rats' brain was transcardially perfused to assess the survival rate of DAergic neurons using the tyrosine hydroxylase (TH) immunohistochemistry.</p><p><strong>Results: </strong>DEX remarkably attenuated the severity of rotational behavior and reversed the progress of the PD. It also increased the number of TH-labeled neurons by up to 60%. The serum glucose levels in 6-OHDA-received rats did not change in the third and seventh weeks after the surgery but decreased significantly in the thirteenth week. Treatment with DEX prevented this decrement in glucose levels. On the other hand, Treatment with yohimbine did not affect PD symptoms and glucose levels.</p><p><strong>Conclusion: </strong>Our data indicate that DEX through neuroprotective activity attenuates the severity of 6-OHDA-induced PD in rats. DEX might also prevent hypoglycemia during the progress of the PD.</p>\",\"PeriodicalId\":19131,\"journal\":{\"name\":\"Neurological Research\",\"volume\":\" \",\"pages\":\"763-771\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01616412.2024.2354084\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01616412.2024.2354084","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Dexmedetomidine, an alpha-2 adrenoceptors agonist, provides a neuroprotective effect for dopaminergic neurons in the substantia nigra and attenuates glucose imbalance in the 6-hydroxydopamine animal model of Parkinson's disease.
Introduction: Studies have shown that dexmedetomidine (DEX, an a2-adrenoceptors agonist) provides a neuroprotective effect and influences blood glucose levels. Here, we evaluated the effect of prolonged treatment with low doses of DEX on the survival rate of dopaminergic (DAergic) neurons in the substantia nigra and also serum glucose levels in 6-hydroxydopamine (6-OHDA) - induced Parkinson's disease (PD) in the rat.
Material and methods: The neurotoxin of 6-OHDA was injected into the medial forebrain bundle by stereotaxic surgery. DEX (25 and 50 µg/kg, i.p) and yohimbine, an a2-adrenoceptor antagonist (1 mg/kg, i.p) were administered before the surgery to the 13 weeks afterward. Apomorphine-induced rotational tests and blood sampling were carried out before the surgery and multiple weeks after that. Thirteen weeks after the surgery, the rats' brain was transcardially perfused to assess the survival rate of DAergic neurons using the tyrosine hydroxylase (TH) immunohistochemistry.
Results: DEX remarkably attenuated the severity of rotational behavior and reversed the progress of the PD. It also increased the number of TH-labeled neurons by up to 60%. The serum glucose levels in 6-OHDA-received rats did not change in the third and seventh weeks after the surgery but decreased significantly in the thirteenth week. Treatment with DEX prevented this decrement in glucose levels. On the other hand, Treatment with yohimbine did not affect PD symptoms and glucose levels.
Conclusion: Our data indicate that DEX through neuroprotective activity attenuates the severity of 6-OHDA-induced PD in rats. DEX might also prevent hypoglycemia during the progress of the PD.
期刊介绍:
Neurological Research is an international, peer-reviewed journal for reporting both basic and clinical research in the fields of neurosurgery, neurology, neuroengineering and neurosciences. It provides a medium for those who recognize the wider implications of their work and who wish to be informed of the relevant experience of others in related and more distant fields.
The scope of the journal includes:
•Stem cell applications
•Molecular neuroscience
•Neuropharmacology
•Neuroradiology
•Neurochemistry
•Biomathematical models
•Endovascular neurosurgery
•Innovation in neurosurgery.