Yasir Malik, Isabel Goncalves Silva, Rene Rivera Diazgranados, Colin Selman, Nazif Alic, Jennifer Ma Tullet
{"title":"TORC1抑制的时间决定了Pol III在秀丽隐杆线虫长寿过程中的参与程度。","authors":"Yasir Malik, Isabel Goncalves Silva, Rene Rivera Diazgranados, Colin Selman, Nazif Alic, Jennifer Ma Tullet","doi":"10.26508/lsa.202402735","DOIUrl":null,"url":null,"abstract":"<p><p>Organismal growth and lifespan are inextricably linked. Target of Rapamycin (TOR) signalling regulates protein production for growth and development, but if reduced, extends lifespan across species. Reduction in the enzyme RNA polymerase III, which transcribes tRNAs and 5S rRNA, also extends longevity. Here, we identify a temporal genetic relationship between TOR and Pol III in <i>Caenorhabditis elegans</i>, showing that they collaborate to regulate progeny production and lifespan. Interestingly, the lifespan interaction between Pol III and TOR is only revealed when TOR signaling is reduced, specifically in adulthood, demonstrating the importance of timing to control TOR regulated developmental versus adult programs. In addition, we show that Pol III acts in <i>C. elegans</i> muscle to promote both longevity and healthspan and that reducing Pol III even in late adulthood is sufficient to extend lifespan. This demonstrates the importance of Pol III for lifespan and age-related health in adult <i>C. elegans</i>.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 7","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091362/pdf/","citationCount":"0","resultStr":"{\"title\":\"Timing of TORC1 inhibition dictates Pol III involvement in <i>Caenorhabditis elegans</i> longevity.\",\"authors\":\"Yasir Malik, Isabel Goncalves Silva, Rene Rivera Diazgranados, Colin Selman, Nazif Alic, Jennifer Ma Tullet\",\"doi\":\"10.26508/lsa.202402735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organismal growth and lifespan are inextricably linked. Target of Rapamycin (TOR) signalling regulates protein production for growth and development, but if reduced, extends lifespan across species. Reduction in the enzyme RNA polymerase III, which transcribes tRNAs and 5S rRNA, also extends longevity. Here, we identify a temporal genetic relationship between TOR and Pol III in <i>Caenorhabditis elegans</i>, showing that they collaborate to regulate progeny production and lifespan. Interestingly, the lifespan interaction between Pol III and TOR is only revealed when TOR signaling is reduced, specifically in adulthood, demonstrating the importance of timing to control TOR regulated developmental versus adult programs. In addition, we show that Pol III acts in <i>C. elegans</i> muscle to promote both longevity and healthspan and that reducing Pol III even in late adulthood is sufficient to extend lifespan. This demonstrates the importance of Pol III for lifespan and age-related health in adult <i>C. elegans</i>.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"7 7\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091362/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202402735\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202402735","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
生物的生长和寿命密不可分。雷帕霉素靶标(TOR)信号调节生长和发育所需的蛋白质生产,但如果减少这种信号,就会延长不同物种的寿命。减少转录 tRNA 和 5S rRNA 的 RNA 聚合酶 III 也会延长寿命。在这里,我们确定了TOR和Pol III在秀丽隐杆线虫中的时间遗传关系,表明它们共同调节后代的产生和寿命。有趣的是,Pol III 和 TOR 之间的寿命交互作用只有在 TOR 信号减少时才会显现,特别是在成年期,这表明了控制 TOR 调节的发育程序与成年程序的时机的重要性。此外,我们还发现 Pol III 在秀丽隐杆线虫的肌肉中起着促进长寿和健康的作用,即使在成年晚期减少 Pol III 也足以延长寿命。这证明了 Pol III 对成年 elegans 的寿命和与年龄相关的健康的重要性。
Timing of TORC1 inhibition dictates Pol III involvement in Caenorhabditis elegans longevity.
Organismal growth and lifespan are inextricably linked. Target of Rapamycin (TOR) signalling regulates protein production for growth and development, but if reduced, extends lifespan across species. Reduction in the enzyme RNA polymerase III, which transcribes tRNAs and 5S rRNA, also extends longevity. Here, we identify a temporal genetic relationship between TOR and Pol III in Caenorhabditis elegans, showing that they collaborate to regulate progeny production and lifespan. Interestingly, the lifespan interaction between Pol III and TOR is only revealed when TOR signaling is reduced, specifically in adulthood, demonstrating the importance of timing to control TOR regulated developmental versus adult programs. In addition, we show that Pol III acts in C. elegans muscle to promote both longevity and healthspan and that reducing Pol III even in late adulthood is sufficient to extend lifespan. This demonstrates the importance of Pol III for lifespan and age-related health in adult C. elegans.
期刊介绍:
Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.