Takashi Imai, Juan Lin, Göksu Gökberk Kaya, Eunjin Ju, Vangelis Kondylis, Konstantinos Kelepouras, Gianmaria Liccardi, Chun Kim, Manolis Pasparakis
{"title":"RIPK1死亡结构域抑制ZBP1和TRIF介导的细胞死亡和炎症反应","authors":"Takashi Imai, Juan Lin, Göksu Gökberk Kaya, Eunjin Ju, Vangelis Kondylis, Konstantinos Kelepouras, Gianmaria Liccardi, Chun Kim, Manolis Pasparakis","doi":"10.1016/j.immuni.2024.04.016","DOIUrl":null,"url":null,"abstract":"<p>RIPK1 is a multi-functional kinase that regulates cell death and inflammation and has been implicated in the pathogenesis of inflammatory diseases. RIPK1 acts in a kinase-dependent and kinase-independent manner to promote or suppress apoptosis and necroptosis, but the underlying mechanisms remain poorly understood. Here, we show that a mutation (R588E) disrupting the RIPK1 death domain (DD) caused perinatal lethality induced by ZBP1-mediated necroptosis. Additionally, these mice developed postnatal inflammatory pathology, which was mediated by necroptosis-independent TNFR1, TRADD, and TRIF signaling, partially requiring RIPK3. Our biochemical mechanistic studies revealed that ZBP1- and TRIF-mediated activation of RIPK3 required RIPK1 kinase activity in wild-type cells but not in <em>Ripk1</em><sup>R588E/R588E</sup> cells, suggesting that DD-dependent oligomerization of RIPK1 and its interaction with FADD determine the mechanisms of RIPK3 activation by ZBP1 and TRIF. Collectively, these findings revealed a critical physiological role of DD-dependent RIPK1 signaling that is important for the regulation of tissue homeostasis and inflammation.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":null,"pages":null},"PeriodicalIF":25.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The RIPK1 death domain restrains ZBP1- and TRIF-mediated cell death and inflammation\",\"authors\":\"Takashi Imai, Juan Lin, Göksu Gökberk Kaya, Eunjin Ju, Vangelis Kondylis, Konstantinos Kelepouras, Gianmaria Liccardi, Chun Kim, Manolis Pasparakis\",\"doi\":\"10.1016/j.immuni.2024.04.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>RIPK1 is a multi-functional kinase that regulates cell death and inflammation and has been implicated in the pathogenesis of inflammatory diseases. RIPK1 acts in a kinase-dependent and kinase-independent manner to promote or suppress apoptosis and necroptosis, but the underlying mechanisms remain poorly understood. Here, we show that a mutation (R588E) disrupting the RIPK1 death domain (DD) caused perinatal lethality induced by ZBP1-mediated necroptosis. Additionally, these mice developed postnatal inflammatory pathology, which was mediated by necroptosis-independent TNFR1, TRADD, and TRIF signaling, partially requiring RIPK3. Our biochemical mechanistic studies revealed that ZBP1- and TRIF-mediated activation of RIPK3 required RIPK1 kinase activity in wild-type cells but not in <em>Ripk1</em><sup>R588E/R588E</sup> cells, suggesting that DD-dependent oligomerization of RIPK1 and its interaction with FADD determine the mechanisms of RIPK3 activation by ZBP1 and TRIF. Collectively, these findings revealed a critical physiological role of DD-dependent RIPK1 signaling that is important for the regulation of tissue homeostasis and inflammation.</p>\",\"PeriodicalId\":13269,\"journal\":{\"name\":\"Immunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":25.5000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.immuni.2024.04.016\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.04.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The RIPK1 death domain restrains ZBP1- and TRIF-mediated cell death and inflammation
RIPK1 is a multi-functional kinase that regulates cell death and inflammation and has been implicated in the pathogenesis of inflammatory diseases. RIPK1 acts in a kinase-dependent and kinase-independent manner to promote or suppress apoptosis and necroptosis, but the underlying mechanisms remain poorly understood. Here, we show that a mutation (R588E) disrupting the RIPK1 death domain (DD) caused perinatal lethality induced by ZBP1-mediated necroptosis. Additionally, these mice developed postnatal inflammatory pathology, which was mediated by necroptosis-independent TNFR1, TRADD, and TRIF signaling, partially requiring RIPK3. Our biochemical mechanistic studies revealed that ZBP1- and TRIF-mediated activation of RIPK3 required RIPK1 kinase activity in wild-type cells but not in Ripk1R588E/R588E cells, suggesting that DD-dependent oligomerization of RIPK1 and its interaction with FADD determine the mechanisms of RIPK3 activation by ZBP1 and TRIF. Collectively, these findings revealed a critical physiological role of DD-dependent RIPK1 signaling that is important for the regulation of tissue homeostasis and inflammation.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.