{"title":"多井开采项目中煤层气抽采的微观-宏观行为","authors":"Dayu Ye, Guannan Liu, Xiang Lin, Hu Liu, Feng Gao","doi":"10.1007/s11053-024-10347-z","DOIUrl":null,"url":null,"abstract":"<p>Multi-well extraction is a prevalent technique in coalbed methane (CBM) recovery projects. Although numerous studies have extensively explored aspects such as well spacing, the degree of multi-well pumping, and well count, the dynamics of fracture microstructure evolution in proximity to wells—particularly in inter-well regions—remain inadequately understood in relation to the effects of multi-well mining project. This research delved into the multi-well extraction methodology employed in CBM recovery endeavors, aiming to elucidate the development of the fracture microstructure network. We introduce a novel, interdisciplinary, and integrative research framework that amalgamates the multi-field coupling effects observed during the multi-well extraction process with fractal theory. This model has been validated, and it facilitates the examination of changes in fracture micro-evolution subjected to multi-well extraction. Additionally, this study investigated alterations in fracture characteristics, seam stress, and CBM pressure within sensitive zones (i.e., inter-well spaces and adjacent areas) under varying extraction pressures. Following a 180-day extraction period, the findings indicate a significant reduction in gas pressure by 83.9% for the extraction wells and the nearby areas, alongside a decrease in fracture network length by 10.94% and density by 5.04%. Compared to existing models for assessing multi-well CBM extraction, our interdisciplinary model demonstrates considerable analytical superiority. Notably, when the fractal parameters <i>D</i><sub><i>f</i></sub> and <i>D</i><sub><i>Tf</i></sub>, which characterize fracture density and tortuosity quantitatively, increase from 1.2 to 1.8, the residual gas pressure is reduced further by 11.6% and increased further by 3.9%, respectively.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"80 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro–Macro Behavior of CBM Extraction in Multi-well Mining Projects\",\"authors\":\"Dayu Ye, Guannan Liu, Xiang Lin, Hu Liu, Feng Gao\",\"doi\":\"10.1007/s11053-024-10347-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-well extraction is a prevalent technique in coalbed methane (CBM) recovery projects. Although numerous studies have extensively explored aspects such as well spacing, the degree of multi-well pumping, and well count, the dynamics of fracture microstructure evolution in proximity to wells—particularly in inter-well regions—remain inadequately understood in relation to the effects of multi-well mining project. This research delved into the multi-well extraction methodology employed in CBM recovery endeavors, aiming to elucidate the development of the fracture microstructure network. We introduce a novel, interdisciplinary, and integrative research framework that amalgamates the multi-field coupling effects observed during the multi-well extraction process with fractal theory. This model has been validated, and it facilitates the examination of changes in fracture micro-evolution subjected to multi-well extraction. Additionally, this study investigated alterations in fracture characteristics, seam stress, and CBM pressure within sensitive zones (i.e., inter-well spaces and adjacent areas) under varying extraction pressures. Following a 180-day extraction period, the findings indicate a significant reduction in gas pressure by 83.9% for the extraction wells and the nearby areas, alongside a decrease in fracture network length by 10.94% and density by 5.04%. Compared to existing models for assessing multi-well CBM extraction, our interdisciplinary model demonstrates considerable analytical superiority. Notably, when the fractal parameters <i>D</i><sub><i>f</i></sub> and <i>D</i><sub><i>Tf</i></sub>, which characterize fracture density and tortuosity quantitatively, increase from 1.2 to 1.8, the residual gas pressure is reduced further by 11.6% and increased further by 3.9%, respectively.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10347-z\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10347-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Micro–Macro Behavior of CBM Extraction in Multi-well Mining Projects
Multi-well extraction is a prevalent technique in coalbed methane (CBM) recovery projects. Although numerous studies have extensively explored aspects such as well spacing, the degree of multi-well pumping, and well count, the dynamics of fracture microstructure evolution in proximity to wells—particularly in inter-well regions—remain inadequately understood in relation to the effects of multi-well mining project. This research delved into the multi-well extraction methodology employed in CBM recovery endeavors, aiming to elucidate the development of the fracture microstructure network. We introduce a novel, interdisciplinary, and integrative research framework that amalgamates the multi-field coupling effects observed during the multi-well extraction process with fractal theory. This model has been validated, and it facilitates the examination of changes in fracture micro-evolution subjected to multi-well extraction. Additionally, this study investigated alterations in fracture characteristics, seam stress, and CBM pressure within sensitive zones (i.e., inter-well spaces and adjacent areas) under varying extraction pressures. Following a 180-day extraction period, the findings indicate a significant reduction in gas pressure by 83.9% for the extraction wells and the nearby areas, alongside a decrease in fracture network length by 10.94% and density by 5.04%. Compared to existing models for assessing multi-well CBM extraction, our interdisciplinary model demonstrates considerable analytical superiority. Notably, when the fractal parameters Df and DTf, which characterize fracture density and tortuosity quantitatively, increase from 1.2 to 1.8, the residual gas pressure is reduced further by 11.6% and increased further by 3.9%, respectively.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.