水路运输关键节点联动控制交通方案的仿真建模与分析

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yang Liu , Jingxian Liu , Yi Liu , Qian Zhang , Jingwen Shu , Yijun Zhang
{"title":"水路运输关键节点联动控制交通方案的仿真建模与分析","authors":"Yang Liu ,&nbsp;Jingxian Liu ,&nbsp;Yi Liu ,&nbsp;Qian Zhang ,&nbsp;Jingwen Shu ,&nbsp;Yijun Zhang","doi":"10.1016/j.simpat.2024.102958","DOIUrl":null,"url":null,"abstract":"<div><p>As global shipping undergoes rapid expansion, pivotal waterway transport systems—including significant nodes like the Panama Canal, the Suez Canal, and the Three Gorges-Gezhouba dams—are increasingly emerging as system-wide bottlenecks that limit transportation capabilities. Recognizing the pressing need for efficient traffic organization at these critical junctures, we designed a hybrid simulation model, which integrates Cellular Automaton and Multi-Agent methods, to analyse traffic efficiency and evaluate different ship organization schemes at these key waterway nodes. The Three Gorges-Gezhouba dams serve as a case study, where we crafted and executed four simulation scenarios that accommodate a range of variables such as different traffic organization schemes, traffic flow volumes, and anchorage capacities. Key operational indicators such as the maximum average waiting time of ships at the anchorage, and the period when the anchorage along the waterway reaches saturation, provide insights into the system's operational condition. The simulation outcomes highlight the proposed model's capability to accurately quantify the impact of implementing a linkage-control scheme and underscore the utility of dynamic adjustment of water area ranges under linkage-control for managing various traffic scenarios. Consequently, our research not only enriches high-precision simulation methodologies but also bolsters decision-making processes concerning ship traffic organization at Waterway Transport Key Nodes.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation modelling and analysis of linkage-controlled traffic scheme in Waterway Transport Key Nodes\",\"authors\":\"Yang Liu ,&nbsp;Jingxian Liu ,&nbsp;Yi Liu ,&nbsp;Qian Zhang ,&nbsp;Jingwen Shu ,&nbsp;Yijun Zhang\",\"doi\":\"10.1016/j.simpat.2024.102958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As global shipping undergoes rapid expansion, pivotal waterway transport systems—including significant nodes like the Panama Canal, the Suez Canal, and the Three Gorges-Gezhouba dams—are increasingly emerging as system-wide bottlenecks that limit transportation capabilities. Recognizing the pressing need for efficient traffic organization at these critical junctures, we designed a hybrid simulation model, which integrates Cellular Automaton and Multi-Agent methods, to analyse traffic efficiency and evaluate different ship organization schemes at these key waterway nodes. The Three Gorges-Gezhouba dams serve as a case study, where we crafted and executed four simulation scenarios that accommodate a range of variables such as different traffic organization schemes, traffic flow volumes, and anchorage capacities. Key operational indicators such as the maximum average waiting time of ships at the anchorage, and the period when the anchorage along the waterway reaches saturation, provide insights into the system's operational condition. The simulation outcomes highlight the proposed model's capability to accurately quantify the impact of implementing a linkage-control scheme and underscore the utility of dynamic adjustment of water area ranges under linkage-control for managing various traffic scenarios. Consequently, our research not only enriches high-precision simulation methodologies but also bolsters decision-making processes concerning ship traffic organization at Waterway Transport Key Nodes.</p></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24000728\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24000728","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着全球航运业的快速发展,包括巴拿马运河、苏伊士运河和三峡-葛洲坝等重要节点在内的关键水路运输系统正日益成为限制运输能力的全系统瓶颈。认识到在这些关键节点实现高效交通组织的迫切需求,我们设计了一个混合仿真模型,该模型融合了细胞自动机和多代理方法,用于分析交通效率并评估这些关键水道节点的不同船舶组织方案。以三峡-葛洲坝大坝为例,我们设计并执行了四种模拟方案,其中包括不同的交通组织方案、交通流量和锚地容量等一系列变量。船舶在锚地的最长平均等待时间和航道沿线锚地达到饱和的时间等关键运行指标,可帮助我们深入了解系统的运行状况。模拟结果凸显了所提出的模型能够准确量化实施联动控制方案的影响,并强调了在联动控制下动态调整水域范围对管理各种交通情况的实用性。因此,我们的研究不仅丰富了高精度仿真方法,还有助于水路运输关键节点的船舶交通组织决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation modelling and analysis of linkage-controlled traffic scheme in Waterway Transport Key Nodes

As global shipping undergoes rapid expansion, pivotal waterway transport systems—including significant nodes like the Panama Canal, the Suez Canal, and the Three Gorges-Gezhouba dams—are increasingly emerging as system-wide bottlenecks that limit transportation capabilities. Recognizing the pressing need for efficient traffic organization at these critical junctures, we designed a hybrid simulation model, which integrates Cellular Automaton and Multi-Agent methods, to analyse traffic efficiency and evaluate different ship organization schemes at these key waterway nodes. The Three Gorges-Gezhouba dams serve as a case study, where we crafted and executed four simulation scenarios that accommodate a range of variables such as different traffic organization schemes, traffic flow volumes, and anchorage capacities. Key operational indicators such as the maximum average waiting time of ships at the anchorage, and the period when the anchorage along the waterway reaches saturation, provide insights into the system's operational condition. The simulation outcomes highlight the proposed model's capability to accurately quantify the impact of implementing a linkage-control scheme and underscore the utility of dynamic adjustment of water area ranges under linkage-control for managing various traffic scenarios. Consequently, our research not only enriches high-precision simulation methodologies but also bolsters decision-making processes concerning ship traffic organization at Waterway Transport Key Nodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Simulation Modelling Practice and Theory
Simulation Modelling Practice and Theory 工程技术-计算机:跨学科应用
CiteScore
9.80
自引率
4.80%
发文量
142
审稿时长
21 days
期刊介绍: The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling. The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas. Paper submission is solicited on: • theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.; • methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.; • simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.; • distributed and real-time simulation, simulation interoperability; • tools for high performance computing simulation, including dedicated architectures and parallel computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信