Agata Wdowiak , Katsiaryna Kryzheuskaya , Anna Podgórska , Bohdan Paterczyk , Jacek Zebrowski , Rafał Archacki , Bożena Szal
{"title":"铵营养改变细胞钙分布,影响铵诱导的生长抑制作用","authors":"Agata Wdowiak , Katsiaryna Kryzheuskaya , Anna Podgórska , Bohdan Paterczyk , Jacek Zebrowski , Rafał Archacki , Bożena Szal","doi":"10.1016/j.jplph.2024.154264","DOIUrl":null,"url":null,"abstract":"<div><p>Proper plant growth requires balanced nutrient levels. In this study, we analyzed the relationship between ammonium (NH<sub>4</sub><sup>+</sup>) nutrition and calcium (Ca<sup>2+</sup>) homeostasis in the leaf tissues of wild-type and mutant Arabidopsis specimens provided with different nitrogen sources (NH<sub>4</sub><sup>+</sup> and nitrate, NO<sub>3</sub><sup>−</sup>). Providing plants with NH<sub>4</sub><sup>+</sup> as the sole nitrogen source disrupts Ca<sup>2+</sup> homeostasis, which is essential for activating signaling pathways and maintaining the cell wall structure. The results revealed that the lower Ca<sup>2+</sup> content in Arabidopsis leaves under NH<sub>4</sub><sup>+</sup> stress might result from reduced transpiration pull, which could impair root-to-shoot Ca<sup>2+</sup> transport. Moreover, NH<sub>4</sub><sup>+</sup> nutrition increased the expression of genes encoding proteins responsible for exporting Ca<sup>2+</sup> from the cytosol of leaf cells. Furthermore, overexpression of the Ca<sup>2+</sup>/H<sup>+</sup> antiporter 1 (CAX1) gene alleviates the effects of NH<sub>4</sub><sup>+</sup> syndrome, including stunted growth. The oeCAX1 plants, characterized by a lower apoplastic Ca<sup>2+</sup> level, grew better under NH<sub>4</sub><sup>+</sup> stress than wild-type plants. Evaluation of the mechanical properties of the leaf blades, including stiffness, strength, toughness, and extensibility, showed that the wild-type and oeCAX1 plants responded differently to the nitrogen source, highlighting the role of cell wall metabolism in inhibiting the growth of NH<sub>4</sub><sup>+</sup>-stressed plants.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"298 ","pages":"Article 154264"},"PeriodicalIF":4.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ammonium nutrition modifies cellular calcium distribution influencing ammonium-induced growth inhibition\",\"authors\":\"Agata Wdowiak , Katsiaryna Kryzheuskaya , Anna Podgórska , Bohdan Paterczyk , Jacek Zebrowski , Rafał Archacki , Bożena Szal\",\"doi\":\"10.1016/j.jplph.2024.154264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proper plant growth requires balanced nutrient levels. In this study, we analyzed the relationship between ammonium (NH<sub>4</sub><sup>+</sup>) nutrition and calcium (Ca<sup>2+</sup>) homeostasis in the leaf tissues of wild-type and mutant Arabidopsis specimens provided with different nitrogen sources (NH<sub>4</sub><sup>+</sup> and nitrate, NO<sub>3</sub><sup>−</sup>). Providing plants with NH<sub>4</sub><sup>+</sup> as the sole nitrogen source disrupts Ca<sup>2+</sup> homeostasis, which is essential for activating signaling pathways and maintaining the cell wall structure. The results revealed that the lower Ca<sup>2+</sup> content in Arabidopsis leaves under NH<sub>4</sub><sup>+</sup> stress might result from reduced transpiration pull, which could impair root-to-shoot Ca<sup>2+</sup> transport. Moreover, NH<sub>4</sub><sup>+</sup> nutrition increased the expression of genes encoding proteins responsible for exporting Ca<sup>2+</sup> from the cytosol of leaf cells. Furthermore, overexpression of the Ca<sup>2+</sup>/H<sup>+</sup> antiporter 1 (CAX1) gene alleviates the effects of NH<sub>4</sub><sup>+</sup> syndrome, including stunted growth. The oeCAX1 plants, characterized by a lower apoplastic Ca<sup>2+</sup> level, grew better under NH<sub>4</sub><sup>+</sup> stress than wild-type plants. Evaluation of the mechanical properties of the leaf blades, including stiffness, strength, toughness, and extensibility, showed that the wild-type and oeCAX1 plants responded differently to the nitrogen source, highlighting the role of cell wall metabolism in inhibiting the growth of NH<sub>4</sub><sup>+</sup>-stressed plants.</p></div>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":\"298 \",\"pages\":\"Article 154264\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0176161724000956\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724000956","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Ammonium nutrition modifies cellular calcium distribution influencing ammonium-induced growth inhibition
Proper plant growth requires balanced nutrient levels. In this study, we analyzed the relationship between ammonium (NH4+) nutrition and calcium (Ca2+) homeostasis in the leaf tissues of wild-type and mutant Arabidopsis specimens provided with different nitrogen sources (NH4+ and nitrate, NO3−). Providing plants with NH4+ as the sole nitrogen source disrupts Ca2+ homeostasis, which is essential for activating signaling pathways and maintaining the cell wall structure. The results revealed that the lower Ca2+ content in Arabidopsis leaves under NH4+ stress might result from reduced transpiration pull, which could impair root-to-shoot Ca2+ transport. Moreover, NH4+ nutrition increased the expression of genes encoding proteins responsible for exporting Ca2+ from the cytosol of leaf cells. Furthermore, overexpression of the Ca2+/H+ antiporter 1 (CAX1) gene alleviates the effects of NH4+ syndrome, including stunted growth. The oeCAX1 plants, characterized by a lower apoplastic Ca2+ level, grew better under NH4+ stress than wild-type plants. Evaluation of the mechanical properties of the leaf blades, including stiffness, strength, toughness, and extensibility, showed that the wild-type and oeCAX1 plants responded differently to the nitrogen source, highlighting the role of cell wall metabolism in inhibiting the growth of NH4+-stressed plants.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.