比较有限粘弹性构成关系和变分原理在胃肠道软组织变形建模中的应用

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Swati Sharma, Martin Lindsay Buist
{"title":"比较有限粘弹性构成关系和变分原理在胃肠道软组织变形建模中的应用","authors":"Swati Sharma,&nbsp;Martin Lindsay Buist","doi":"10.1016/j.jmbbm.2024.106560","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical attributes of soft tissues within the gastrointestinal (GI) tract are crucial for the effective operation of the GI system, and alterations in these properties may play a role in motility-related disorders. Various constitutive modeling approaches have been suggested to comprehend the response of soft tissues to diverse loading conditions. Among these, hyperelastic constitutive models based on finite elasticity have gained popularity. However, these models fall short in capturing rate- and time-dependent tissue properties. In contrast, finite viscoelastic models offer a solution to overcome these limitations. Nevertheless, the development of a suitable finite viscoelastic model, coupled with a variational formulation for efficient finite element (FE) implementation, remains an ongoing challenge. This study aims to address this gap by developing diverse finite viscoelastic constitutive relations and applying them to characterize soft tissue. Furthermore, the research explores the creation of compressible, nearly incompressible, and incompressible versions of viscoelastic constitutive relations, along with their variational formulation, to facilitate efficient FE implementation. The proposed model demonstrates remarkable accuracy in replicating experimental results, achieving an <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> value exceeding 0.99.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing finite viscoelastic constitutive relations and variational principles in modeling gastrointestinal soft tissue deformation\",\"authors\":\"Swati Sharma,&nbsp;Martin Lindsay Buist\",\"doi\":\"10.1016/j.jmbbm.2024.106560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanical attributes of soft tissues within the gastrointestinal (GI) tract are crucial for the effective operation of the GI system, and alterations in these properties may play a role in motility-related disorders. Various constitutive modeling approaches have been suggested to comprehend the response of soft tissues to diverse loading conditions. Among these, hyperelastic constitutive models based on finite elasticity have gained popularity. However, these models fall short in capturing rate- and time-dependent tissue properties. In contrast, finite viscoelastic models offer a solution to overcome these limitations. Nevertheless, the development of a suitable finite viscoelastic model, coupled with a variational formulation for efficient finite element (FE) implementation, remains an ongoing challenge. This study aims to address this gap by developing diverse finite viscoelastic constitutive relations and applying them to characterize soft tissue. Furthermore, the research explores the creation of compressible, nearly incompressible, and incompressible versions of viscoelastic constitutive relations, along with their variational formulation, to facilitate efficient FE implementation. The proposed model demonstrates remarkable accuracy in replicating experimental results, achieving an <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> value exceeding 0.99.</p></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124001929\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124001929","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

胃肠道(GI)内软组织的机械属性对胃肠道系统的有效运行至关重要,这些属性的改变可能会导致运动相关疾病。为了理解软组织对不同加载条件的响应,人们提出了各种构造建模方法。其中,以有限弹性为基础的高弹性构成模型广受欢迎。然而,这些模型在捕捉随速率和时间变化的组织特性方面存在不足。相比之下,有限粘弹性模型为克服这些局限性提供了解决方案。然而,如何开发合适的有限粘弹性模型,并将其与有效实施有限元(FE)的变分法相结合,仍然是一个持续的挑战。本研究旨在通过开发多样化的有限粘弹性构成关系,并将其应用于描述软组织特征,从而弥补这一不足。此外,研究还探索了粘弹性构成关系的可压缩、近不可压缩和不可压缩版本,以及它们的变分公式,以促进有效的有限元实施。所提出的模型在复制实验结果方面具有显著的准确性,R2 值超过 0.99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing finite viscoelastic constitutive relations and variational principles in modeling gastrointestinal soft tissue deformation

The mechanical attributes of soft tissues within the gastrointestinal (GI) tract are crucial for the effective operation of the GI system, and alterations in these properties may play a role in motility-related disorders. Various constitutive modeling approaches have been suggested to comprehend the response of soft tissues to diverse loading conditions. Among these, hyperelastic constitutive models based on finite elasticity have gained popularity. However, these models fall short in capturing rate- and time-dependent tissue properties. In contrast, finite viscoelastic models offer a solution to overcome these limitations. Nevertheless, the development of a suitable finite viscoelastic model, coupled with a variational formulation for efficient finite element (FE) implementation, remains an ongoing challenge. This study aims to address this gap by developing diverse finite viscoelastic constitutive relations and applying them to characterize soft tissue. Furthermore, the research explores the creation of compressible, nearly incompressible, and incompressible versions of viscoelastic constitutive relations, along with their variational formulation, to facilitate efficient FE implementation. The proposed model demonstrates remarkable accuracy in replicating experimental results, achieving an R2 value exceeding 0.99.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信