稳定 LiNi0.5Mn1.5O4 的高温运行和日历寿命

Weiliang Yao , Yixuan Li , Marco Olguin , Shuang Bai , Marshall A. Schroeder , Weikang Li , Alex Liu , Na Ri Park , Bhargav Bhamwala , Baharak Sayahpour , Ganesh Raghavendran , Oleg Borodin , Minghao Zhang , Ying Shirley Meng
{"title":"稳定 LiNi0.5Mn1.5O4 的高温运行和日历寿命","authors":"Weiliang Yao ,&nbsp;Yixuan Li ,&nbsp;Marco Olguin ,&nbsp;Shuang Bai ,&nbsp;Marshall A. Schroeder ,&nbsp;Weikang Li ,&nbsp;Alex Liu ,&nbsp;Na Ri Park ,&nbsp;Bhargav Bhamwala ,&nbsp;Baharak Sayahpour ,&nbsp;Ganesh Raghavendran ,&nbsp;Oleg Borodin ,&nbsp;Minghao Zhang ,&nbsp;Ying Shirley Meng","doi":"10.1016/j.nxener.2024.100136","DOIUrl":null,"url":null,"abstract":"<div><p>Severe capacity degradation at high operating voltages and poor interphase stability at elevated temperature have thus far precluded the practical application of LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) as a cathode material for lithium-ion batteries. Addressing these challenges through a combination of experimental and theoretical methods in this work, we demonstrate how a fluorinated carbonate electrolyte enables both high-voltage and high temperature operation by mitigating the traditional interfacial reactions observed in electrolytes with conventional carbonate solvents. Computational studies confirm the exceptional oxidation stability of fluorinated carbonate electrolyte which reduces deprotonation at high voltage. The mitigated deprotonation will then minimize the formation of HF acid which corrodes the LNMO surface and leads to phase transformation and poor interphases. With fluorinated carbonate electrolyte at elevated temperature, it was found on LNMO’s subsurface a reduced amount of Mn<sub>3</sub>O<sub>4</sub> phase which can block Li<sup>+</sup> transfer and result in drastic cell failure. Leveraging this approach, LNMO/graphite full cells with a high loading of 3.0 mAh/cm<sup>2</sup> achieve excellent cycling stability, retaining ∼84 % of their initial capacity at room temperature (25 °C) after 200 cycles and ∼68 % after 100 cycles at 55 °C. This advanced electrolyte also shows promise for improving calendar life, retaining &gt;30 % more capacity than the carbonate baseline after high temperature storage. These results indicate that electrolytes based on fluorinated carbonates are a promising strategy for overcoming the remaining challenges toward practical commercial application of LNMO.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000413/pdfft?md5=a67a4921611e89853c28c6b9e2ccbfc2&pid=1-s2.0-S2949821X24000413-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stabilizing high temperature operation and calendar life of LiNi0.5Mn1.5O4\",\"authors\":\"Weiliang Yao ,&nbsp;Yixuan Li ,&nbsp;Marco Olguin ,&nbsp;Shuang Bai ,&nbsp;Marshall A. Schroeder ,&nbsp;Weikang Li ,&nbsp;Alex Liu ,&nbsp;Na Ri Park ,&nbsp;Bhargav Bhamwala ,&nbsp;Baharak Sayahpour ,&nbsp;Ganesh Raghavendran ,&nbsp;Oleg Borodin ,&nbsp;Minghao Zhang ,&nbsp;Ying Shirley Meng\",\"doi\":\"10.1016/j.nxener.2024.100136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Severe capacity degradation at high operating voltages and poor interphase stability at elevated temperature have thus far precluded the practical application of LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) as a cathode material for lithium-ion batteries. Addressing these challenges through a combination of experimental and theoretical methods in this work, we demonstrate how a fluorinated carbonate electrolyte enables both high-voltage and high temperature operation by mitigating the traditional interfacial reactions observed in electrolytes with conventional carbonate solvents. Computational studies confirm the exceptional oxidation stability of fluorinated carbonate electrolyte which reduces deprotonation at high voltage. The mitigated deprotonation will then minimize the formation of HF acid which corrodes the LNMO surface and leads to phase transformation and poor interphases. With fluorinated carbonate electrolyte at elevated temperature, it was found on LNMO’s subsurface a reduced amount of Mn<sub>3</sub>O<sub>4</sub> phase which can block Li<sup>+</sup> transfer and result in drastic cell failure. Leveraging this approach, LNMO/graphite full cells with a high loading of 3.0 mAh/cm<sup>2</sup> achieve excellent cycling stability, retaining ∼84 % of their initial capacity at room temperature (25 °C) after 200 cycles and ∼68 % after 100 cycles at 55 °C. This advanced electrolyte also shows promise for improving calendar life, retaining &gt;30 % more capacity than the carbonate baseline after high temperature storage. These results indicate that electrolytes based on fluorinated carbonates are a promising strategy for overcoming the remaining challenges toward practical commercial application of LNMO.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000413/pdfft?md5=a67a4921611e89853c28c6b9e2ccbfc2&pid=1-s2.0-S2949821X24000413-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24000413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,锂离子电池正极材料镍钴锰酸锂(LiNi0.5Mn1.5O4,LNMO)在高工作电压下的严重容量衰减和在高温下的相间稳定性差,阻碍了它的实际应用。为了应对这些挑战,我们在这项工作中结合了实验和理论方法,展示了含氟碳酸盐电解质如何通过减轻传统碳酸盐溶剂电解质中出现的传统界面反应来实现高压和高温运行。计算研究证实,含氟碳酸盐电解质具有优异的氧化稳定性,可减少高压下的去质子化反应。减轻的去质子化将最大程度地减少氟化氢酸的形成,而氟化氢酸会腐蚀 LNMO 表面,导致相变和相间不良。在高温下使用含氟碳酸盐电解液时,在 LNMO 的亚表面发现了数量减少的 Mn3O4 相,这会阻碍 Li+ 的转移,导致电池严重失效。利用这种方法,装载量高达 3.0 mAh/cm2 的 LNMO/ 石墨全电池实现了出色的循环稳定性,在室温(25 °C)下循环 200 次后,其初始容量仍保持在 84% 左右,在 55 °C下循环 100 次后,其初始容量仍保持在 68%左右。这种先进的电解质还显示出提高日历寿命的前景,在高温储存后,其容量比碳酸盐基线电解质多 30%。这些结果表明,基于含氟碳酸盐的电解质是克服 LNMO 实际商业应用所面临的其余挑战的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizing high temperature operation and calendar life of LiNi0.5Mn1.5O4

Severe capacity degradation at high operating voltages and poor interphase stability at elevated temperature have thus far precluded the practical application of LiNi0.5Mn1.5O4 (LNMO) as a cathode material for lithium-ion batteries. Addressing these challenges through a combination of experimental and theoretical methods in this work, we demonstrate how a fluorinated carbonate electrolyte enables both high-voltage and high temperature operation by mitigating the traditional interfacial reactions observed in electrolytes with conventional carbonate solvents. Computational studies confirm the exceptional oxidation stability of fluorinated carbonate electrolyte which reduces deprotonation at high voltage. The mitigated deprotonation will then minimize the formation of HF acid which corrodes the LNMO surface and leads to phase transformation and poor interphases. With fluorinated carbonate electrolyte at elevated temperature, it was found on LNMO’s subsurface a reduced amount of Mn3O4 phase which can block Li+ transfer and result in drastic cell failure. Leveraging this approach, LNMO/graphite full cells with a high loading of 3.0 mAh/cm2 achieve excellent cycling stability, retaining ∼84 % of their initial capacity at room temperature (25 °C) after 200 cycles and ∼68 % after 100 cycles at 55 °C. This advanced electrolyte also shows promise for improving calendar life, retaining >30 % more capacity than the carbonate baseline after high temperature storage. These results indicate that electrolytes based on fluorinated carbonates are a promising strategy for overcoming the remaining challenges toward practical commercial application of LNMO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信