{"title":"数字组织病理学中生物结构的多分辨率语义分割。","authors":"Sina Salsabili, Adrian D C Chan, Eranga Ukwatta","doi":"10.1117/1.JMI.11.3.037501","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Semantic segmentation in high-resolution, histopathology whole slide images (WSIs) is an important fundamental task in various pathology applications. Convolutional neural networks (CNN) are the state-of-the-art approach for image segmentation. A patch-based CNN approach is often employed because of the large size of WSIs; however, segmentation performance is sensitive to the field-of-view and resolution of the input patches, and balancing the trade-offs is challenging when there are drastic size variations in the segmented structures. We propose a multiresolution semantic segmentation approach, which is capable of addressing the threefold trade-off between field-of-view, computational efficiency, and spatial resolution in histopathology WSIs.</p><p><strong>Approach: </strong>We propose a two-stage multiresolution approach for semantic segmentation of histopathology WSIs of mouse lung tissue and human placenta. In the first stage, we use four different CNNs to extract the contextual information from input patches at four different resolutions. In the second stage, we use another CNN to aggregate the extracted information in the first stage and generate the final segmentation masks.</p><p><strong>Results: </strong>The proposed method reported 95.6%, 92.5%, and 97.1% in our single-class placenta dataset and 97.1%, 87.3%, and 83.3% in our multiclass lung dataset for pixel-wise accuracy, mean Dice similarity coefficient, and mean positive predictive value, respectively.</p><p><strong>Conclusions: </strong>The proposed multiresolution approach demonstrated high accuracy and consistency in the semantic segmentation of biological structures of different sizes in our single-class placenta and multiclass lung histopathology WSI datasets. Our study can potentially be used in automated analysis of biological structures, facilitating the clinical research in histopathology applications.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086667/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiresolution semantic segmentation of biological structures in digital histopathology.\",\"authors\":\"Sina Salsabili, Adrian D C Chan, Eranga Ukwatta\",\"doi\":\"10.1117/1.JMI.11.3.037501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Semantic segmentation in high-resolution, histopathology whole slide images (WSIs) is an important fundamental task in various pathology applications. Convolutional neural networks (CNN) are the state-of-the-art approach for image segmentation. A patch-based CNN approach is often employed because of the large size of WSIs; however, segmentation performance is sensitive to the field-of-view and resolution of the input patches, and balancing the trade-offs is challenging when there are drastic size variations in the segmented structures. We propose a multiresolution semantic segmentation approach, which is capable of addressing the threefold trade-off between field-of-view, computational efficiency, and spatial resolution in histopathology WSIs.</p><p><strong>Approach: </strong>We propose a two-stage multiresolution approach for semantic segmentation of histopathology WSIs of mouse lung tissue and human placenta. In the first stage, we use four different CNNs to extract the contextual information from input patches at four different resolutions. In the second stage, we use another CNN to aggregate the extracted information in the first stage and generate the final segmentation masks.</p><p><strong>Results: </strong>The proposed method reported 95.6%, 92.5%, and 97.1% in our single-class placenta dataset and 97.1%, 87.3%, and 83.3% in our multiclass lung dataset for pixel-wise accuracy, mean Dice similarity coefficient, and mean positive predictive value, respectively.</p><p><strong>Conclusions: </strong>The proposed multiresolution approach demonstrated high accuracy and consistency in the semantic segmentation of biological structures of different sizes in our single-class placenta and multiclass lung histopathology WSI datasets. Our study can potentially be used in automated analysis of biological structures, facilitating the clinical research in histopathology applications.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086667/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.11.3.037501\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.3.037501","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
目的:高分辨率组织病理学全切片图像(WSI)的语义分割是各种病理学应用中的一项重要基本任务。卷积神经网络(CNN)是最先进的图像分割方法。然而,分割性能对输入斑块的视场和分辨率非常敏感,而且当分割结构的尺寸变化很大时,平衡取舍是一项挑战。我们提出了一种多分辨率语义分割方法,它能够解决组织病理学 WSI 中视场、计算效率和空间分辨率之间的三重权衡问题:我们提出了一种两阶段多分辨率方法,用于对小鼠肺组织和人类胎盘的组织病理学 WSI 进行语义分割。在第一阶段,我们使用四个不同的 CNN 从四个不同分辨率的输入斑块中提取上下文信息。在第二阶段,我们使用另一个 CNN 聚合第一阶段提取的信息,并生成最终的分割掩膜:结果:在单类胎盘数据集中,所提出的方法的像素准确率、平均 Dice 相似性系数和平均正预测值分别为 95.6%、92.5% 和 97.1%;在多类肺部数据集中,所提出的方法的像素准确率、平均 Dice 相似性系数和平均正预测值分别为 97.1%、87.3% 和 83.3%:在单类胎盘和多类肺组织病理学 WSI 数据集中,所提出的多分辨率方法在对不同大小的生物结构进行语义分割时表现出了很高的准确性和一致性。我们的研究可用于生物结构的自动分析,促进组织病理学应用的临床研究。
Multiresolution semantic segmentation of biological structures in digital histopathology.
Purpose: Semantic segmentation in high-resolution, histopathology whole slide images (WSIs) is an important fundamental task in various pathology applications. Convolutional neural networks (CNN) are the state-of-the-art approach for image segmentation. A patch-based CNN approach is often employed because of the large size of WSIs; however, segmentation performance is sensitive to the field-of-view and resolution of the input patches, and balancing the trade-offs is challenging when there are drastic size variations in the segmented structures. We propose a multiresolution semantic segmentation approach, which is capable of addressing the threefold trade-off between field-of-view, computational efficiency, and spatial resolution in histopathology WSIs.
Approach: We propose a two-stage multiresolution approach for semantic segmentation of histopathology WSIs of mouse lung tissue and human placenta. In the first stage, we use four different CNNs to extract the contextual information from input patches at four different resolutions. In the second stage, we use another CNN to aggregate the extracted information in the first stage and generate the final segmentation masks.
Results: The proposed method reported 95.6%, 92.5%, and 97.1% in our single-class placenta dataset and 97.1%, 87.3%, and 83.3% in our multiclass lung dataset for pixel-wise accuracy, mean Dice similarity coefficient, and mean positive predictive value, respectively.
Conclusions: The proposed multiresolution approach demonstrated high accuracy and consistency in the semantic segmentation of biological structures of different sizes in our single-class placenta and multiclass lung histopathology WSI datasets. Our study can potentially be used in automated analysis of biological structures, facilitating the clinical research in histopathology applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.