Chang Song, Yan Li, Huiying Han, Yueyue Zhang, Ning Wang
{"title":"脂质纳米颗粒包裹的lncRNA DLX6-AS1敲除可通过Nrf2/HO-1/NLRP3轴改善脑缺血损伤。","authors":"Chang Song, Yan Li, Huiying Han, Yueyue Zhang, Ning Wang","doi":"10.1080/01616412.2024.2345024","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Cerebral ischemia is a neurological disorder that leads to permanent disability. This research focuses on exploring the ameliorative effects of lipid nanoparticle (LNP)-encapsulated lncRNA DLX6-AS1 knockdown in cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.</p><p><strong>Methods: </strong>LNP-encapsulated lncRNA DLX6-AS1 was prepared. Cerebral ischemic injury mouse models were established utilizing middle cerebral artery occlusion (MCAO). The mice were treated by intravenous injection of LNP-encapsulated lncRNA DLX6-AS1. The neurological deficits, Inflammatory factor levels, pathological characteristics were observed. In vitro N2a cell oxygen and glucose deprivation (OGD) models were established, and the cells were treated with LNP-encapsulated lncRNA DLX6-AS1 or Nrf2 inhibitor (ML385). Cell viability and apoptosis were tested. DLX6-AS1, Nrf2, HO-1, and NLRP3 expression levels were assessed.</p><p><strong>Results: </strong>LncRNA DLX6-AS1 levels were elevated in the brain tissues of mice with cerebral ischemic injury and OGD-induced N2a cells. LNP-encapsulated DLX6-AS1 siRNA (si-DLX6-AS1) improved neurological deficit scores, reduced the levels of inflammatory factors, improved brain tissue pathological damage, and raised the number of survival neurons in CA1. LNP-encapsulated si-DLX6-AS1 ameliorated the OGD-induced N2a cell viability decrease and apoptosis rate increase, and ML385 (Nrf2 inhibitor) reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1. In cerebral ischemic injury mice and OGD-induced N2a cells, Nrf2 and HO-1 levels were reduced and NLRP3 levels were increased. LNP-encapsulated si-DLX6-AS1 raised Nrf2 and HO-1 levels and reduced NLRP3 levels. Nrf2 inhibitor ML385 treatment reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1 on OGD-induced N2a cell viability and apoptosis.</p><p><strong>Conclusion: </strong>Lipid nanoparticle-encapsulated si-DLX6-AS1 ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.</p>","PeriodicalId":19131,"journal":{"name":"Neurological Research","volume":" ","pages":"706-716"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid nanoparticle-encapsulated lncRNA DLX6-AS1 knockdown ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.\",\"authors\":\"Chang Song, Yan Li, Huiying Han, Yueyue Zhang, Ning Wang\",\"doi\":\"10.1080/01616412.2024.2345024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Cerebral ischemia is a neurological disorder that leads to permanent disability. This research focuses on exploring the ameliorative effects of lipid nanoparticle (LNP)-encapsulated lncRNA DLX6-AS1 knockdown in cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.</p><p><strong>Methods: </strong>LNP-encapsulated lncRNA DLX6-AS1 was prepared. Cerebral ischemic injury mouse models were established utilizing middle cerebral artery occlusion (MCAO). The mice were treated by intravenous injection of LNP-encapsulated lncRNA DLX6-AS1. The neurological deficits, Inflammatory factor levels, pathological characteristics were observed. In vitro N2a cell oxygen and glucose deprivation (OGD) models were established, and the cells were treated with LNP-encapsulated lncRNA DLX6-AS1 or Nrf2 inhibitor (ML385). Cell viability and apoptosis were tested. DLX6-AS1, Nrf2, HO-1, and NLRP3 expression levels were assessed.</p><p><strong>Results: </strong>LncRNA DLX6-AS1 levels were elevated in the brain tissues of mice with cerebral ischemic injury and OGD-induced N2a cells. LNP-encapsulated DLX6-AS1 siRNA (si-DLX6-AS1) improved neurological deficit scores, reduced the levels of inflammatory factors, improved brain tissue pathological damage, and raised the number of survival neurons in CA1. LNP-encapsulated si-DLX6-AS1 ameliorated the OGD-induced N2a cell viability decrease and apoptosis rate increase, and ML385 (Nrf2 inhibitor) reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1. In cerebral ischemic injury mice and OGD-induced N2a cells, Nrf2 and HO-1 levels were reduced and NLRP3 levels were increased. LNP-encapsulated si-DLX6-AS1 raised Nrf2 and HO-1 levels and reduced NLRP3 levels. Nrf2 inhibitor ML385 treatment reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1 on OGD-induced N2a cell viability and apoptosis.</p><p><strong>Conclusion: </strong>Lipid nanoparticle-encapsulated si-DLX6-AS1 ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.</p>\",\"PeriodicalId\":19131,\"journal\":{\"name\":\"Neurological Research\",\"volume\":\" \",\"pages\":\"706-716\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01616412.2024.2345024\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01616412.2024.2345024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Lipid nanoparticle-encapsulated lncRNA DLX6-AS1 knockdown ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.
Objective: Cerebral ischemia is a neurological disorder that leads to permanent disability. This research focuses on exploring the ameliorative effects of lipid nanoparticle (LNP)-encapsulated lncRNA DLX6-AS1 knockdown in cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.
Methods: LNP-encapsulated lncRNA DLX6-AS1 was prepared. Cerebral ischemic injury mouse models were established utilizing middle cerebral artery occlusion (MCAO). The mice were treated by intravenous injection of LNP-encapsulated lncRNA DLX6-AS1. The neurological deficits, Inflammatory factor levels, pathological characteristics were observed. In vitro N2a cell oxygen and glucose deprivation (OGD) models were established, and the cells were treated with LNP-encapsulated lncRNA DLX6-AS1 or Nrf2 inhibitor (ML385). Cell viability and apoptosis were tested. DLX6-AS1, Nrf2, HO-1, and NLRP3 expression levels were assessed.
Results: LncRNA DLX6-AS1 levels were elevated in the brain tissues of mice with cerebral ischemic injury and OGD-induced N2a cells. LNP-encapsulated DLX6-AS1 siRNA (si-DLX6-AS1) improved neurological deficit scores, reduced the levels of inflammatory factors, improved brain tissue pathological damage, and raised the number of survival neurons in CA1. LNP-encapsulated si-DLX6-AS1 ameliorated the OGD-induced N2a cell viability decrease and apoptosis rate increase, and ML385 (Nrf2 inhibitor) reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1. In cerebral ischemic injury mice and OGD-induced N2a cells, Nrf2 and HO-1 levels were reduced and NLRP3 levels were increased. LNP-encapsulated si-DLX6-AS1 raised Nrf2 and HO-1 levels and reduced NLRP3 levels. Nrf2 inhibitor ML385 treatment reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1 on OGD-induced N2a cell viability and apoptosis.
Conclusion: Lipid nanoparticle-encapsulated si-DLX6-AS1 ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.
期刊介绍:
Neurological Research is an international, peer-reviewed journal for reporting both basic and clinical research in the fields of neurosurgery, neurology, neuroengineering and neurosciences. It provides a medium for those who recognize the wider implications of their work and who wish to be informed of the relevant experience of others in related and more distant fields.
The scope of the journal includes:
•Stem cell applications
•Molecular neuroscience
•Neuropharmacology
•Neuroradiology
•Neurochemistry
•Biomathematical models
•Endovascular neurosurgery
•Innovation in neurosurgery.