APTAnet:原子级多肽-TCR相互作用亲和力预测模型。

Peng Xiong, Anyi Liang, Xunhui Cai, Tian Xia
{"title":"APTAnet:原子级多肽-TCR相互作用亲和力预测模型。","authors":"Peng Xiong, Anyi Liang, Xunhui Cai, Tian Xia","doi":"10.52601/bpr.2023.230037","DOIUrl":null,"url":null,"abstract":"<p><p>The prediction of affinity between TCRs and peptides is crucial for the further development of TIL (Tumor-Infiltrating Lymphocytes) immunotherapy. Inspired by the broader research of drug-protein interaction (DPI), we propose an atom-level peptide-TCR interaction (PTI) affinity prediction model APTAnet using natural language processing methods. APTAnet model achieved an average ROC-AUC and PR-AUC of 0.893 and 0.877, respectively, in ten-fold cross-validation on 25,675 pairs of PTI data. Furthermore, experimental results on an independent test set from the McPAS database showed that APTAnet outperformed the current mainstream models. Finally, through the validation on 11 cases of real tumor patient data, we found that the APTAnet model can effectively identify tumor peptides and screen tumor-specific TCRs.</p>","PeriodicalId":93906,"journal":{"name":"Biophysics reports","volume":"10 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079603/pdf/","citationCount":"0","resultStr":"{\"title\":\"APTAnet: an atom-level peptide-TCR interaction affinity prediction model.\",\"authors\":\"Peng Xiong, Anyi Liang, Xunhui Cai, Tian Xia\",\"doi\":\"10.52601/bpr.2023.230037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prediction of affinity between TCRs and peptides is crucial for the further development of TIL (Tumor-Infiltrating Lymphocytes) immunotherapy. Inspired by the broader research of drug-protein interaction (DPI), we propose an atom-level peptide-TCR interaction (PTI) affinity prediction model APTAnet using natural language processing methods. APTAnet model achieved an average ROC-AUC and PR-AUC of 0.893 and 0.877, respectively, in ten-fold cross-validation on 25,675 pairs of PTI data. Furthermore, experimental results on an independent test set from the McPAS database showed that APTAnet outperformed the current mainstream models. Finally, through the validation on 11 cases of real tumor patient data, we found that the APTAnet model can effectively identify tumor peptides and screen tumor-specific TCRs.</p>\",\"PeriodicalId\":93906,\"journal\":{\"name\":\"Biophysics reports\",\"volume\":\"10 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079603/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52601/bpr.2023.230037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2023.230037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

TCR与多肽之间的亲和力预测对于TIL(肿瘤浸润淋巴细胞)免疫疗法的进一步发展至关重要。受更广泛的药物-蛋白质相互作用(DPI)研究的启发,我们利用自然语言处理方法提出了原子级肽-TCR相互作用(PTI)亲和力预测模型APTAnet。在 25,675 对 PTI 数据的十倍交叉验证中,APTAnet 模型的平均 ROC-AUC 和 PR-AUC 分别达到了 0.893 和 0.877。此外,在 McPAS 数据库的独立测试集上的实验结果表明,APTAnet 的性能优于目前的主流模型。最后,通过对11例真实肿瘤患者数据的验证,我们发现APTAnet模型能有效识别肿瘤多肽和筛选肿瘤特异性TCR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
APTAnet: an atom-level peptide-TCR interaction affinity prediction model.

The prediction of affinity between TCRs and peptides is crucial for the further development of TIL (Tumor-Infiltrating Lymphocytes) immunotherapy. Inspired by the broader research of drug-protein interaction (DPI), we propose an atom-level peptide-TCR interaction (PTI) affinity prediction model APTAnet using natural language processing methods. APTAnet model achieved an average ROC-AUC and PR-AUC of 0.893 and 0.877, respectively, in ten-fold cross-validation on 25,675 pairs of PTI data. Furthermore, experimental results on an independent test set from the McPAS database showed that APTAnet outperformed the current mainstream models. Finally, through the validation on 11 cases of real tumor patient data, we found that the APTAnet model can effectively identify tumor peptides and screen tumor-specific TCRs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信