{"title":"APTAnet:原子级多肽-TCR相互作用亲和力预测模型。","authors":"Peng Xiong, Anyi Liang, Xunhui Cai, Tian Xia","doi":"10.52601/bpr.2023.230037","DOIUrl":null,"url":null,"abstract":"<p><p>The prediction of affinity between TCRs and peptides is crucial for the further development of TIL (Tumor-Infiltrating Lymphocytes) immunotherapy. Inspired by the broader research of drug-protein interaction (DPI), we propose an atom-level peptide-TCR interaction (PTI) affinity prediction model APTAnet using natural language processing methods. APTAnet model achieved an average ROC-AUC and PR-AUC of 0.893 and 0.877, respectively, in ten-fold cross-validation on 25,675 pairs of PTI data. Furthermore, experimental results on an independent test set from the McPAS database showed that APTAnet outperformed the current mainstream models. Finally, through the validation on 11 cases of real tumor patient data, we found that the APTAnet model can effectively identify tumor peptides and screen tumor-specific TCRs.</p>","PeriodicalId":93906,"journal":{"name":"Biophysics reports","volume":"10 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079603/pdf/","citationCount":"0","resultStr":"{\"title\":\"APTAnet: an atom-level peptide-TCR interaction affinity prediction model.\",\"authors\":\"Peng Xiong, Anyi Liang, Xunhui Cai, Tian Xia\",\"doi\":\"10.52601/bpr.2023.230037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prediction of affinity between TCRs and peptides is crucial for the further development of TIL (Tumor-Infiltrating Lymphocytes) immunotherapy. Inspired by the broader research of drug-protein interaction (DPI), we propose an atom-level peptide-TCR interaction (PTI) affinity prediction model APTAnet using natural language processing methods. APTAnet model achieved an average ROC-AUC and PR-AUC of 0.893 and 0.877, respectively, in ten-fold cross-validation on 25,675 pairs of PTI data. Furthermore, experimental results on an independent test set from the McPAS database showed that APTAnet outperformed the current mainstream models. Finally, through the validation on 11 cases of real tumor patient data, we found that the APTAnet model can effectively identify tumor peptides and screen tumor-specific TCRs.</p>\",\"PeriodicalId\":93906,\"journal\":{\"name\":\"Biophysics reports\",\"volume\":\"10 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11079603/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52601/bpr.2023.230037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2023.230037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
APTAnet: an atom-level peptide-TCR interaction affinity prediction model.
The prediction of affinity between TCRs and peptides is crucial for the further development of TIL (Tumor-Infiltrating Lymphocytes) immunotherapy. Inspired by the broader research of drug-protein interaction (DPI), we propose an atom-level peptide-TCR interaction (PTI) affinity prediction model APTAnet using natural language processing methods. APTAnet model achieved an average ROC-AUC and PR-AUC of 0.893 and 0.877, respectively, in ten-fold cross-validation on 25,675 pairs of PTI data. Furthermore, experimental results on an independent test set from the McPAS database showed that APTAnet outperformed the current mainstream models. Finally, through the validation on 11 cases of real tumor patient data, we found that the APTAnet model can effectively identify tumor peptides and screen tumor-specific TCRs.