Hernán Barrio-Zhang, Élfego Ruiz-Gutiérrez, Daniel Orejon, Gary G. Wells, Rodrigo Ledesma-Aguilar
{"title":"蒸发和凝结过程中由湿度梯度驱动的液滴运动。","authors":"Hernán Barrio-Zhang, Élfego Ruiz-Gutiérrez, Daniel Orejon, Gary G. Wells, Rodrigo Ledesma-Aguilar","doi":"10.1140/epje/s10189-024-00426-7","DOIUrl":null,"url":null,"abstract":"<p>The motion of droplets on solid surfaces in response to an external gradient is a fundamental problem with a broad range of applications, including water harvesting, heat exchange, mixing and printing. Here we study the motion of droplets driven by a humidity gradient, i.e. a variation in concentration of their own vapour in the surrounding gas phase. Using lattice-Boltzmann simulations of a diffuse-interface hydrodynamic model to account for the liquid and gas phases, we demonstrate that the droplet migrates towards the region of higher vapour concentration. This effect holds in situations where the ambient gradient drives either the evaporation or the condensation of the droplet, or both simultaneously. We identify two main mechanisms responsible for the observed motion: a difference in surface wettability, which we measure in terms of the Young stress, and a variation in surface tension, which drives a Marangoni flow. Our results are relevant in advancing our knowledge of the interplay between gas and liquid phases out of thermodynamic equilibrium, as well as for applications involving the control of droplet motion.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089009/pdf/","citationCount":"0","resultStr":"{\"title\":\"Droplet motion driven by humidity gradients during evaporation and condensation\",\"authors\":\"Hernán Barrio-Zhang, Élfego Ruiz-Gutiérrez, Daniel Orejon, Gary G. Wells, Rodrigo Ledesma-Aguilar\",\"doi\":\"10.1140/epje/s10189-024-00426-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The motion of droplets on solid surfaces in response to an external gradient is a fundamental problem with a broad range of applications, including water harvesting, heat exchange, mixing and printing. Here we study the motion of droplets driven by a humidity gradient, i.e. a variation in concentration of their own vapour in the surrounding gas phase. Using lattice-Boltzmann simulations of a diffuse-interface hydrodynamic model to account for the liquid and gas phases, we demonstrate that the droplet migrates towards the region of higher vapour concentration. This effect holds in situations where the ambient gradient drives either the evaporation or the condensation of the droplet, or both simultaneously. We identify two main mechanisms responsible for the observed motion: a difference in surface wettability, which we measure in terms of the Young stress, and a variation in surface tension, which drives a Marangoni flow. Our results are relevant in advancing our knowledge of the interplay between gas and liquid phases out of thermodynamic equilibrium, as well as for applications involving the control of droplet motion.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"47 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089009/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-024-00426-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00426-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Droplet motion driven by humidity gradients during evaporation and condensation
The motion of droplets on solid surfaces in response to an external gradient is a fundamental problem with a broad range of applications, including water harvesting, heat exchange, mixing and printing. Here we study the motion of droplets driven by a humidity gradient, i.e. a variation in concentration of their own vapour in the surrounding gas phase. Using lattice-Boltzmann simulations of a diffuse-interface hydrodynamic model to account for the liquid and gas phases, we demonstrate that the droplet migrates towards the region of higher vapour concentration. This effect holds in situations where the ambient gradient drives either the evaporation or the condensation of the droplet, or both simultaneously. We identify two main mechanisms responsible for the observed motion: a difference in surface wettability, which we measure in terms of the Young stress, and a variation in surface tension, which drives a Marangoni flow. Our results are relevant in advancing our knowledge of the interplay between gas and liquid phases out of thermodynamic equilibrium, as well as for applications involving the control of droplet motion.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.