利用功能连接比较小鼠和人类扣带回皮层的组织结构

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY
Brain Structure & Function Pub Date : 2024-11-01 Epub Date: 2024-05-13 DOI:10.1007/s00429-024-02773-9
Aran T B van Hout, Sabrina van Heukelum, Matthew F S Rushworth, Joanes Grandjean, Rogier B Mars
{"title":"利用功能连接比较小鼠和人类扣带回皮层的组织结构","authors":"Aran T B van Hout, Sabrina van Heukelum, Matthew F S Rushworth, Joanes Grandjean, Rogier B Mars","doi":"10.1007/s00429-024-02773-9","DOIUrl":null,"url":null,"abstract":"<p><p>The subdivisions of the extended cingulate cortex of the human brain are implicated in a number of high-level behaviors and affected by a range of neuropsychiatric disorders. Its anatomy, function, and response to therapeutics are often studied using non-human animals, including the mouse. However, the similarity of human and mouse frontal cortex, including cingulate areas, is still not fully understood. Some accounts emphasize resemblances between mouse cingulate cortex and human cingulate cortex while others emphasize similarities with human granular prefrontal cortex. We use comparative neuroimaging to study the connectivity of the cingulate cortex in the mouse and human, allowing comparisons between mouse 'gold standard' tracer and imaging data, and, in addition, comparison between the mouse and the human using comparable imaging data. We find overall similarities in organization of the cingulate between species, including anterior and midcingulate areas and a retrosplenial area. However, human cingulate contains subareas with a more fine-grained organization than is apparent in the mouse and it has connections to prefrontal areas not present in the mouse. Results such as these help formally address between-species brain organization and aim to improve the translation from preclinical to human results.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1913-1925"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485145/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparing mouse and human cingulate cortex organization using functional connectivity.\",\"authors\":\"Aran T B van Hout, Sabrina van Heukelum, Matthew F S Rushworth, Joanes Grandjean, Rogier B Mars\",\"doi\":\"10.1007/s00429-024-02773-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The subdivisions of the extended cingulate cortex of the human brain are implicated in a number of high-level behaviors and affected by a range of neuropsychiatric disorders. Its anatomy, function, and response to therapeutics are often studied using non-human animals, including the mouse. However, the similarity of human and mouse frontal cortex, including cingulate areas, is still not fully understood. Some accounts emphasize resemblances between mouse cingulate cortex and human cingulate cortex while others emphasize similarities with human granular prefrontal cortex. We use comparative neuroimaging to study the connectivity of the cingulate cortex in the mouse and human, allowing comparisons between mouse 'gold standard' tracer and imaging data, and, in addition, comparison between the mouse and the human using comparable imaging data. We find overall similarities in organization of the cingulate between species, including anterior and midcingulate areas and a retrosplenial area. However, human cingulate contains subareas with a more fine-grained organization than is apparent in the mouse and it has connections to prefrontal areas not present in the mouse. Results such as these help formally address between-species brain organization and aim to improve the translation from preclinical to human results.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\" \",\"pages\":\"1913-1925\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485145/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-024-02773-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02773-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类大脑的扩展扣带回皮层分支与许多高级行为有关,并受到一系列神经精神疾病的影响。人们通常使用非人类动物(包括小鼠)来研究其解剖、功能和对治疗药物的反应。然而,人类和小鼠额叶皮层(包括扣带回区域)的相似性仍未得到充分了解。一些研究强调小鼠扣带回皮层与人类扣带回皮层的相似性,而另一些研究则强调小鼠扣带回皮层与人类颗粒状前额叶皮层的相似性。我们利用比较神经成像技术研究了小鼠和人类扣带回皮层的连通性,从而对小鼠的 "黄金标准 "示踪剂和成像数据进行了比较,此外还利用可比成像数据对小鼠和人类进行了比较。我们发现不同物种扣带回的组织结构总体上相似,包括前扣带回区、中扣带回区和后扣带回区。然而,与小鼠相比,人类扣带回包含的亚区组织更为精细,而且与小鼠的前额叶区有联系。这些结果有助于正式解决物种间大脑组织的问题,并旨在改善从临床前结果到人类结果的转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparing mouse and human cingulate cortex organization using functional connectivity.

Comparing mouse and human cingulate cortex organization using functional connectivity.

The subdivisions of the extended cingulate cortex of the human brain are implicated in a number of high-level behaviors and affected by a range of neuropsychiatric disorders. Its anatomy, function, and response to therapeutics are often studied using non-human animals, including the mouse. However, the similarity of human and mouse frontal cortex, including cingulate areas, is still not fully understood. Some accounts emphasize resemblances between mouse cingulate cortex and human cingulate cortex while others emphasize similarities with human granular prefrontal cortex. We use comparative neuroimaging to study the connectivity of the cingulate cortex in the mouse and human, allowing comparisons between mouse 'gold standard' tracer and imaging data, and, in addition, comparison between the mouse and the human using comparable imaging data. We find overall similarities in organization of the cingulate between species, including anterior and midcingulate areas and a retrosplenial area. However, human cingulate contains subareas with a more fine-grained organization than is apparent in the mouse and it has connections to prefrontal areas not present in the mouse. Results such as these help formally address between-species brain organization and aim to improve the translation from preclinical to human results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信