{"title":"Delonix Regia 花瓣的花青素:光电应用中的荧光增强、福斯特共振能量转移机制和光稳定性研究新方法。","authors":"D Harshitha, Anil Kumar, H M Mahesh, C G Renuka","doi":"10.1007/s10895-024-03730-9","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we focused on extracting the anthocyanin dye in acetone, butanol, ethanol, and water solvents from Delonix regia flowers by a simple maceration extraction process. The identification of functional group analysis, vibrational studies, energy transfer mechanisms, optoelectronic properties, photostability studies, FRET-assisted potential light emissions and photometric properties of the anthocyanin dyes are successively investigated. FTIR spectroscopy and vibrational studies have confirmed the existence of polyphenolic groups in 2-phenyl chromenylium (anthocyanin) dyes. The optoelectronic results show the least direct bandgap (2.04 eV), indirect bandgap (1.55 eV), Urbach energy (0.380 eV), high refractive index (1.20), dielectric constant (2.794), and high optical conductivity (1.954 × 10<sup>3</sup> S/m) for the anthocyanin dye extracted found in water solvent. The photoluminescence properties such as Stoke's shift, high quantum yield, and lifetime results show that anthocyanin dyes are promising candidates for red-LEDs and optical materials. The absorption and emission spectra of the anthocyanin dyes follow the mirror image rule and the Franck-Condon factor exists between vibrational energy levels corresponding to all the electronic transitions. The excellent correspondence between the absorption and emission spectra reinforces that the anthocyanins are efficient (46%) FRET probes. Further, photometric properties such as CIE, CRI, CCT and colour purity results of anthocyanins in all studied solvents revealed that this material exhibits orange to red shades (x = 0.48 → 0.54 and y = 0.36 →0.45) and is well suitable for have great potential in the manufacturing of Organic-LEDs and other optoelectronic device applications.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"3195-3226"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anthocyanins of Delonix Regia Floral Petals: A Novel Approach on Fluorescence Enhancement, Forster Resonance Energy Transfer Mechanism and Photostability Studies for Optoelectronic Applications.\",\"authors\":\"D Harshitha, Anil Kumar, H M Mahesh, C G Renuka\",\"doi\":\"10.1007/s10895-024-03730-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we focused on extracting the anthocyanin dye in acetone, butanol, ethanol, and water solvents from Delonix regia flowers by a simple maceration extraction process. The identification of functional group analysis, vibrational studies, energy transfer mechanisms, optoelectronic properties, photostability studies, FRET-assisted potential light emissions and photometric properties of the anthocyanin dyes are successively investigated. FTIR spectroscopy and vibrational studies have confirmed the existence of polyphenolic groups in 2-phenyl chromenylium (anthocyanin) dyes. The optoelectronic results show the least direct bandgap (2.04 eV), indirect bandgap (1.55 eV), Urbach energy (0.380 eV), high refractive index (1.20), dielectric constant (2.794), and high optical conductivity (1.954 × 10<sup>3</sup> S/m) for the anthocyanin dye extracted found in water solvent. The photoluminescence properties such as Stoke's shift, high quantum yield, and lifetime results show that anthocyanin dyes are promising candidates for red-LEDs and optical materials. The absorption and emission spectra of the anthocyanin dyes follow the mirror image rule and the Franck-Condon factor exists between vibrational energy levels corresponding to all the electronic transitions. The excellent correspondence between the absorption and emission spectra reinforces that the anthocyanins are efficient (46%) FRET probes. Further, photometric properties such as CIE, CRI, CCT and colour purity results of anthocyanins in all studied solvents revealed that this material exhibits orange to red shades (x = 0.48 → 0.54 and y = 0.36 →0.45) and is well suitable for have great potential in the manufacturing of Organic-LEDs and other optoelectronic device applications.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"3195-3226\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03730-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03730-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Anthocyanins of Delonix Regia Floral Petals: A Novel Approach on Fluorescence Enhancement, Forster Resonance Energy Transfer Mechanism and Photostability Studies for Optoelectronic Applications.
In this work, we focused on extracting the anthocyanin dye in acetone, butanol, ethanol, and water solvents from Delonix regia flowers by a simple maceration extraction process. The identification of functional group analysis, vibrational studies, energy transfer mechanisms, optoelectronic properties, photostability studies, FRET-assisted potential light emissions and photometric properties of the anthocyanin dyes are successively investigated. FTIR spectroscopy and vibrational studies have confirmed the existence of polyphenolic groups in 2-phenyl chromenylium (anthocyanin) dyes. The optoelectronic results show the least direct bandgap (2.04 eV), indirect bandgap (1.55 eV), Urbach energy (0.380 eV), high refractive index (1.20), dielectric constant (2.794), and high optical conductivity (1.954 × 103 S/m) for the anthocyanin dye extracted found in water solvent. The photoluminescence properties such as Stoke's shift, high quantum yield, and lifetime results show that anthocyanin dyes are promising candidates for red-LEDs and optical materials. The absorption and emission spectra of the anthocyanin dyes follow the mirror image rule and the Franck-Condon factor exists between vibrational energy levels corresponding to all the electronic transitions. The excellent correspondence between the absorption and emission spectra reinforces that the anthocyanins are efficient (46%) FRET probes. Further, photometric properties such as CIE, CRI, CCT and colour purity results of anthocyanins in all studied solvents revealed that this material exhibits orange to red shades (x = 0.48 → 0.54 and y = 0.36 →0.45) and is well suitable for have great potential in the manufacturing of Organic-LEDs and other optoelectronic device applications.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.